Chinese Journal of Quantum Electronics, Volume. 30, Issue 6, 641(2013)

LSPR-enhanced upconversion luminescence of NaYF4:Yb,Er nanoparticles and its application

Alifu Nuernisha* and Chong-jun JIN
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] Mader H S, Kele P, Saleh S M, et al. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging [J]. Current Opinion in Chemical Biology, 2010, 14: 582-596.

    [2] [2] Auzel F. Compteur quantique par transfert d'energie entre deux ions de terres rares dans un tungstate mixte et dans un verre [J]. Compt. Rend. Acad. Sci. Paris. B, 1966, 262: 1016.

    [3] [3] ShockleY W, Quesisser H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 23: 510-519.

    [4] [4] Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139.

    [5] [5] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano. Lett., 2007, 7(3): 847-852.

    [6] [6] Chen G Y, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs. Nano., 2010, 4(6): 3163-3168.

    [7] [7] Vetrone F, Naccache R, Mahalingam V, et al. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater., 2009, 19: 2924-2929.

    [8] [8] Esteban R, Laroche M, Greffet J J. Influence of metallic nanoparticles on upconversion processes [J]. J. Appl. Phys., 2009, 105: 033107.

    [9] [9] Fujii M, Nakano T, Imakita K, et al. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells [J]. J. Phys. Chem. C, 2013, 117: 1113-1120.

    [11] [11] Halas N J. Plasmonics: An emerging field fostered by nano letters [J]. Nano. Lett., 2010, 10: 3816-3822.

    [12] [12] Kabasghin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing [J]. Nat. Mater., 2009, 8: 867-871.

    [13] [13] Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection [J]. Nat. Mater., 2010, 9: 60-67.

    [14] [14] Deng W, Goldys E M. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences [J]. Langmuir, 2012, 28: 10152-10163.

    [15] [15] Kim S, Jin J, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement [J]. Nat. Mater., 2008, 453(5): 757-760.

    [16] [16] Kassab L R, Kobayashi R A, Pinto R de Almeida, et al. Influence of silver nanoparticles in the luminescence efficiency of Pr3+doped tellurite glasses [J]. J. Appl. Phys., 2007, 102: 103515.

    [17] [17] Som T, Karmakar B. Nanosilver enhanced upconversion fluorescence of erbium ions in Er3 +: Ag-antimony glass nanocomposites [J]. J. Appl. Phys., 2009, 105: 013102.

    [18] [18] Zhang F, Braun G B, Shi Y, et al. Fabrication of AgSiO2 Y2 O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles [J]. J. Am. Chem. Soc., 2010, 132: 2850-2851.

    [19] [19] Saboktakin M, Ye X, OH S J, et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation [J]. Acs. Nano., 2012, 10(6): 8758.

    [20] [20] Schietinger S, Aichele T, Wang H Q, et al. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals [J]. Nano. Lett., 2010, 10: 134-138.

    [21] [21] Verhagen E, Kuipers L, Polman A. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence [J]. Opt. Expr., 2009, 7(1): 14588.

    [22] [22] Zhang W, Ding F, Chou S Y, et al. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas [J]. Adv. Mater., 2012, 24: 236.

    [23] [23] Yuan P Y, Lee Y H, M K, et al. Plasmon enhanced upconversion luminescence of NaYF4:Yb,ErSiO2 Ag core-shell nanocomposites for cell imaging [J]. Nanoscale., 2012, 4: 5132.

    [24] [24] Li Z Q, Chen S, Li J J, et al. Plasmon-enhanced upconversion fluorescence in NaYF4:Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells [J]. J. App. Phys., 2012, 111: 014310.

    [25] [25] Zhang H, Li Y, Ivanov I A, et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem., 2010, 122: 2927-2930.

    [27] [27] Mackowski S, Wormke S, Maier A J, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes [J]. Nano. Lett., 2008, 8(2): 558-564.

    [28] [28] Song J H, Atay T, Shi S, et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons [J]. Nano. Lett., 2005, 5: 1557-1561.

    [29] [29] Priyam A, Idris N M, Zhang Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging [J]. J. Mater. Chem., 2012, 22: 960.

    [30] [30] Halas N J, Loo C, Lowery A, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy [J]. Nano. Lett., 2005, 5: 709.

    [31] [31] Dong B, Xu S, Sun J, et al. Multifunctional NaYF4:Yb3+, Er3+Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy [J]. J. Mater. Chem., 2011, 21: 6193.

    [32] [32] Wang M, Hou W, Mi C C, et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles [J]. Anal. Chem., 2009, 81: 8783.

    [33] [33] Wild J De, Meijerink A, Rath J K, et al. Towards upconversion for amorphous silicon solar cells [J]. Sol. Cells., 2010, 94: 1919.

    [34] [34] Atre A C, Garcia-Etxarria A, Alaeian H, et al. Toward high-efficiency solar upconversion with plasmonic nanostructures [J]. J. Opt., 2012, 14: 024008.

    [35] [35] Li Z Q, Li X D, Liu Q Q, et al. Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells [J]. Nanotechnolog., 2012, 23: 025402.

    [36] [36] Zhang S Z, Sun L D, Yan C H, et al. Reversible luminescence switching of NaYF4:Yb, Er nanoparticles with controlled assembly of gold nanoparticles [J]. Chem. Commun., 2009, 18: 2547-2549.

    CLP Journals

    [1] WANG Yan, LI Wen, XUE Dongfeng. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228

    Tools

    Get Citation

    Copy Citation Text

    Nuernisha Alifu, JIN Chong-jun. LSPR-enhanced upconversion luminescence of NaYF4:Yb,Er nanoparticles and its application[J]. Chinese Journal of Quantum Electronics, 2013, 30(6): 641

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 19, 2013

    Accepted: --

    Published Online: Dec. 4, 2013

    The Author Email: Alifu Nuernisha (nens@mail2.sysu.edu.cn)

    DOI:10.3969/j.issn.1007-5461. 2013.06.001

    Topics