Infrared and Laser Engineering, Volume. 53, Issue 10, 20240234(2024)

(1+2)-dimensional spatial solitons in liquid crystals with competing nonlinearities

Meng ZHANG, Shaozhi PU, Mingxin DU, Ying SUN, Xiaomeng WANG, and Ying LIANG
Author Affiliations
  • School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China
  • show less
    Figures & Tables(8)
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the degree of thermal nonlocality \begin{document}${\sigma _2}$\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}$ \gamma $\end{document}=0.1; (b) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}$ \gamma $\end{document}=0.2; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.2
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the degree of reorientation non-locality \begin{document}${\sigma _1}$\end{document}. (a) \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.1; (b) \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2; (c) \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2
    The variation of critical power \begin{document}${p_c}$\end{document} of optical solitons with the thermal nonlinearity coefficient \begin{document}$\gamma $\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=8; (b) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=9; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=8; (d) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=9
    Intensity distribution of the Gaussian beam at several different propagation distances. (a1)-(a4) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_{c + }} $\end{document}=624.6, \begin{document}${p_{c - }}$\end{document}=27; (b1)-(b4) \begin{document}${\sigma _1}$\end{document}=3, \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_{c + }} $\end{document}=921.6, \begin{document}${p_{c - }}$\end{document}=239.5; (c1)- (c4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=9, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_c} $\end{document}=540; (d1)-(d4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=8, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}$ {p_c} $\end{document}=411.5
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the degree of thermal nonlocality \begin{document}${\sigma _2}$\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.05; (b) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}$ \gamma $\end{document}=0.05; (c) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}$ \gamma $\end{document}=0.1
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the degree of reorientation non-locality \begin{document}${\sigma _1}$\end{document}. (a) \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.05; (b) \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.05; (c) \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.1; (d) \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.1
    The variation of critical power \begin{document}${p_c}$\end{document} of dipole solitons with the thermal nonlinearity coefficient \begin{document}$\gamma $\end{document}. (a) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11; (b) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=12; (c) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=11; (d) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=12
    Intensity distribution of the dipole solitons at several different propagation distances. (a1)-(a4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.1, \begin{document}$ {p_{c + }} $\end{document}=2592, \begin{document}${p_{c - }}$\end{document}=816.8; (b1)-(b4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=11, \begin{document}$ \gamma $\end{document}=0.2, \begin{document}${p_c}$\end{document}=852.1; (c1)-(c4) \begin{document}${\sigma _1}$\end{document}=4, \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.05, \begin{document}$ {p_{c + }} $\end{document}=7 564, \begin{document}${p_{c - }}$\end{document}=676.6; (d1)-(d4) \begin{document}${\sigma _1}$\end{document}=5, \begin{document}${\sigma _2}$\end{document}=12, \begin{document}$ \gamma $\end{document}=0.1, \begin{document}${p_c}$\end{document}=1 596
    Tools

    Get Citation

    Copy Citation Text

    Meng ZHANG, Shaozhi PU, Mingxin DU, Ying SUN, Xiaomeng WANG, Ying LIANG. (1+2)-dimensional spatial solitons in liquid crystals with competing nonlinearities[J]. Infrared and Laser Engineering, 2024, 53(10): 20240234

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 非线性光学

    Received: Jun. 3, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email:

    DOI:10.3788/IRLA20240234

    Topics