Infrared and Laser Engineering, Volume. 49, Issue 1, 103001(2020)

Research progress of infrared and terahertz detectors based on two-dimensional materials regulated by photo-hot carrier

Zhu Jiutai1,2、*, Guo Wanlong1, Liu Feng2, Wang Lin1, and Chen Xiaoshuang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(78)

    [1] [1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics[J]. Nat Mater, 2017, 16(2): 264-272.

              Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics[J]. Nat Mater, 2017, 16(2): 264-272.

    [2] [2] Miao J, Song Jinshu, Bo Xu, et al. Single pixel black phosphorus photodetector for near-infrared imaging[J]. Small, 2018, 14(2):1702082.

              Miao J, Song Jinshu, Bo Xu, et al. Single pixel black phosphorus photodetector for near-infrared imaging[J]. Small, 2018, 14(2):1702082.

    [3] [3] Ye L, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699.

              Ye L, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699.

    [4] [4] Guo N, Hu Weida, Jiang Tao, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065-16072.

              Guo N, Hu Weida, Jiang Tao, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065-16072.

    [5] [5] Zhu Zhengfeng, Zou Yousheng, Hu Weida, et al. Near-infrared plasmonic 2D semimetals for applications in communication and biology[J]. Advanced Functional Materials, 2016, 26(11): 1793-1802.

              Zhu Zhengfeng, Zou Yousheng, Hu Weida, et al. Near-infrared plasmonic 2D semimetals for applications in communication and biology[J]. Advanced Functional Materials, 2016, 26(11): 1793-1802.

    [6] [6] Li Zhen, Ezhilarasu, Goutham, et al. Indirect band gap emission by hot electron injection in Metal/MoS(2) and Metal/WSe(2) Heterojunctions[J]. Nano Lett, 2015, 15(6): 3977-3982.

              Li Zhen, Ezhilarasu, Goutham, et al. Indirect band gap emission by hot electron injection in Metal/MoS(2) and Metal/WSe(2) Heterojunctions[J]. Nano Lett, 2015, 15(6): 3977-3982.

    [7] [7] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat Nanotechnol, 2015, 10(1): 25-34.

              Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat Nanotechnol, 2015, 10(1): 25-34.

    [8] [8] Zhong S. Progress in terahertz nondestructive testing: A review[J]. Frontiers of Mechanical Engineering, 2018, 14(3): 273-281.

              Zhong S. Progress in terahertz nondestructive testing: A review[J]. Frontiers of Mechanical Engineering, 2018, 14(3): 273-281.

    [9] [9] Bandurin D A, Svintsov Dmitry, Gayduchenko Igor, et al. Resonant terahertz detection using graphene plasmons[J]. Nat Commun, 2018, 9(1): 53-92.

              Bandurin D A, Svintsov Dmitry, Gayduchenko Igor, et al. Resonant terahertz detection using graphene plasmons[J]. Nat Commun, 2018, 9(1): 53-92.

    [10] [10] Luxmoore I J, Liu Peter, Li Penglei, et al. Graphene-metamaterial photodetectors for integrated infrared sensing[J]. ACS Photonics, 2016, 3(6): 936-941.

              Luxmoore I J, Liu Peter, Li Penglei, et al. Graphene-metamaterial photodetectors for integrated infrared sensing[J]. ACS Photonics, 2016, 3(6): 936-941.

    [11] [11] Guo Q, Pospischil Andreas, Bhuiyan Maruf, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Lett, 2016, 16(7): 4648-4655.

              Guo Q, Pospischil Andreas, Bhuiyan Maruf, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Lett, 2016, 16(7): 4648-4655.

    [12] [12] Xu Ming, Gu Yuqian, Peng Ruoming, et al. Black phosphorus mid-infrared photodetectors[J]. Applied Physics B, 2017, 123(4): 130.

              Xu Ming, Gu Yuqian, Peng Ruoming, et al. Black phosphorus mid-infrared photodetectors[J]. Applied Physics B, 2017, 123(4): 130.

    [13] [13] Wang Xudong, Wang Peng, Wang Jianlu, et al.Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42): 6575-6581.

              Wang Xudong, Wang Peng, Wang Jianlu, et al.Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42): 6575-6581.

    [14] [14] Guo Junxiong, Li Shangdong, He Zhenbei, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483: 1037-1043.

              Guo Junxiong, Li Shangdong, He Zhenbei, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483: 1037-1043.

    [15] [15] Wang F, Li Leigang, Huang Wenjuan, et al. Submillimeter 2D Bi2Se3 Flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33): 1802707.

              Wang F, Li Leigang, Huang Wenjuan, et al. Submillimeter 2D Bi2Se3 Flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33): 1802707.

    [16] [16] Sharma A, Bhattacharyya B,Srivastava A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Sci Rep, 2016: 6.

              Sharma A, Bhattacharyya B,Srivastava A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Sci Rep, 2016: 6.

    [17] [17] Wang Xinran, Dai Guozhan, Liu Biao, et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113-620.

              Wang Xinran, Dai Guozhan, Liu Biao, et al. Broadband photodetectors based on topological insulator Bi2Se3 nanowire with enhanced performance by strain modulation effect[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113-620.

    [18] [18] Miao Jinshu, Hu Weida, Guo Nan, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8): 936-942.

              Miao Jinshu, Hu Weida, Guo Nan, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8): 936-942.

    [19] [19] Kim J, Park Sungjoon, Jang Houk, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488.

              Kim J, Park Sungjoon, Jang Houk, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488.

    [20] [20] Lin C, Grassi R, Low T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Lett, 2016, 16(3): 1683-1689.

              Lin C, Grassi R, Low T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Lett, 2016, 16(3): 1683-1689.

    [21] [21] Peng R, Khaliji K,Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus[J]. Nano Lett, 2017, 17(10): 6315-6320.

              Peng R, Khaliji K,Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus[J]. Nano Lett, 2017, 17(10): 6315-6320.

    [22] [22] Chen X, Lu Xiaobo, Deng Bingchen, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nat Commun, 2017, 8(1): 16-72.

              Chen X, Lu Xiaobo, Deng Bingchen, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nat Commun, 2017, 8(1): 16-72.

    [23] [23] Ye Ling, Wang Peng, Luo Wenjin, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60.

              Ye Ling, Wang Peng, Luo Wenjin, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60.

    [24] [24] Xiang Du, Han Cheng, Wu Jing, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nat Commun, 2015, 6: 64-85.

              Xiang Du, Han Cheng, Wu Jing, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nat Commun, 2015, 6: 64-85.

    [25] [25] Spirito D, Coquillat D, De B, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111.

              Spirito D, Coquillat D, De B, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111.

    [26] [26] Tong J, Muthee M, Chen Shooyu, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano Lett, 2015, 15(8): 5295-5301.

              Tong J, Muthee M, Chen Shooyu, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano Lett, 2015, 15(8): 5295-5301.

    [27] [27] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Lett, 2016, 16(1): 80-87.

              Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Lett, 2016, 16(1): 80-87.

    [28] [28] Viti L, Hu Jin, Coquillat D, et al. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Sci Rep, 2016, 6:20474.

              Viti L, Hu Jin, Coquillat D, et al. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response[J]. Sci Rep, 2016, 6:20474.

    [29] [29] Qin Hua, Liang Shixiong, Li Xiang, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor,[J]. Carbon, 2016, 116: 760-765.

              Qin Hua, Liang Shixiong, Li Xiang, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor,[J]. Carbon, 2016, 116: 760-765.

    [30] [30] Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31):1801786.

              Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31):1801786.

    [31] [31] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Lett, 2019, 19(5): 2765-2773.

              Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Lett, 2019, 19(5): 2765-2773.

    [32] [32] El Fatimy A, Schoen, Brongersma M L, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers[J]. Nat Nanotechnol, 2016, 11(4): 335-338.

              El Fatimy A, Schoen, Brongersma M L, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers[J]. Nat Nanotechnol, 2016, 11(4): 335-338.

    [33] [33] Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14(3): 1374-1380.

              Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14(3): 1374-1380.

    [34] [34] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nat Mater, 2012, 11(10): 865-871.

              Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nat Mater, 2012, 11(10): 865-871.

    [35] [35] Viti L, Hu Jin, Coquillat D, et al. Black phosphorus terahertz photodetectors[J]. Adv Mater, 2015, 27(37): 5567-5572.

              Viti L, Hu Jin, Coquillat D, et al. Black phosphorus terahertz photodetectors[J]. Adv Mater, 2015, 27(37): 5567-5572.

    [36] [36] Viti L, Politano A, Zhang Kai, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4): 1995-2002.

              Viti L, Politano A, Zhang Kai, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4): 1995-2002.

    [37] [37] Liu Changlong, Wang Lin, Chen Xiaoshuang, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene[J]. Advanced Optical Materials, 2018, 6(24): 1800836.

              Liu Changlong, Wang Lin, Chen Xiaoshuang, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene[J]. Advanced Optical Materials, 2018, 6(24): 1800836.

    [38] [38] Schlecht M T, Preu S, Malzer S, et al. An efficient Terahertz rectifier on the graphene/SiC materials platform[J]. Sci Rep, 2019, 9(1): 11205.

              Schlecht M T, Preu S, Malzer S, et al. An efficient Terahertz rectifier on the graphene/SiC materials platform[J]. Sci Rep, 2019, 9(1): 11205.

    [39] [39] Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures[J]. 2D Materials, 2016, 3(4): 11205.

              Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures[J]. 2D Materials, 2016, 3(4): 11205.

    Tools

    Get Citation

    Copy Citation Text

    Zhu Jiutai, Guo Wanlong, Liu Feng, Wang Lin, Chen Xiaoshuang. Research progress of infrared and terahertz detectors based on two-dimensional materials regulated by photo-hot carrier[J]. Infrared and Laser Engineering, 2020, 49(1): 103001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏———新型红外器件

    Received: Oct. 5, 2019

    Accepted: Nov. 15, 2019

    Published Online: Jun. 8, 2020

    The Author Email: Jiutai Zhu (zhujiutai@163.com)

    DOI:10.3788/irla202049.0103001

    Topics