Optics and Precision Engineering, Volume. 27, Issue 12, 2683(2019)

Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution

ZHANG Shao-lei*... FU Guang-yuan, WANG Hong-qiao and ZHAO Yu-qing |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [4] [4] CHUN H Z, LI L Z. Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection [J]. Infrared Physics & Technology, 2018, 92: 166-176.

    [5] [5] UZKENT B. Real-time vehicle tracking in aerial video using hyperspectral features [C].Computer Vision and Pattern Recognition Workshops. IEEE, 2016.

    [7] [7] KAWAKAMI R, WRIGHT J, TAI Y W, et al.. High-resolution hyperspectral imaging via matrix factorization [C]. Computer Vision and Pattern Recognition(CVPR), 2011.

    [8] [8] YOKOYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 528-537.

    [9] [9] AKHTAR N, SHAFAIT F, MIAN A. Sparse spatio-spectral representation for hyperspectral image super-resolution [C].European Conference on Computer Vision. Springer, Cham, 2014.

    [10] [10] WEI Q, DOBIGEON N, TOURNERET J Y. Bayesian fusion of hyperspectral and multispectral images [C].IEEE International Conference on Acoustics. IEEE, 2014.

    [11] [11] AKHTAR N, SHAFAIT F, MIAN A. Bayesian sparse representation for hyperspectral image super resolution [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3631-3640.

    [12] [12] LANARAS C, BALTSAVIAS E, SCHINDLER K. Hyperspectral super-resolution by coupled spectral unmixing [C].Proceedings of the IEEE International Conference on Computer Vision, 2015: 3586-3594.

    [13] [13] DIAN R, FANG L, LI S. Hyperspectral image super-resolution via non-local sparse tensor factorization [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5344-5353.

    [14] [14] AIAZZI B, BARONTI S, SELVA M. Improving component substitution pansharpening through multivariate regression of MS + Pan data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3230-3239.

    [15] [15] LIU J G. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details [J]. International Journal of Remote Sensing, 2000, 21(18): 3461-3472.

    [16] [16] AIAZZI B, ALPARONE L, BARONTI S, et al.. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery [J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591-596.

    [17] [17] DONG W, FU F, SHI G, et al.. Hyperspectral image super-resolution via non-negative structured sparse representation [J]. IEEE Transactions on Image Processing, 2016, 25(5): 2337-2352.

    [18] [18] HUANG W, XIAO L, WEI Z, et al.. A new pan-sharpening method with deep neural networks [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1037-1041.

    [19] [19] PALSSON F, SVEINSSON J R, ULFARSSON M O. Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 639-643.

    [20] [20] DIAN R, LI S, GUO A, et al. Deep hyperspectral image sharpening [J]. IEEE transactions on neural networks and learning systems, 2018 (99): 1-11.

    [21] [21] QU Y, QI H, KWAN C. Unsupervised sparse Dirichlet-net for hyperspectral image super-resolution [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2511-2520.

    [22] [22] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al.. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches [J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012, 5(2): 354-379.

    [23] [23] ZHAO X L, WANG F, HUANG T Z, et al.. Deblurring and sparse unmixing for hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4045-4058.

    [24] [24] LIAO W, GOOSSENS B, AELTERMAN J, et al.. Hyperspectral image deblurring with PCA and total variation [C].2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2013: 1-4.

    [25] [25] BRESSON X, CHAN T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing [J]. Inverse Problems and Imaging, 2008, 2(4): 455-484.

    [26] [26] YASUMA F, MITSUNAGA T, ISO D, et al.. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum [J]. IEEE Transactions on Image Processing, 2010, 19(9): 2241-2253.

    [27] [27] CHAKRABARTI A, ZICKLER T. Statistics of real-world hyperspectral images [C].CVPR 2011. IEEE, 2011: 193-200.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Shao-lei, FU Guang-yuan, WANG Hong-qiao, ZHAO Yu-qing. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Optics and Precision Engineering, 2019, 27(12): 2683

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 26, 2019

    Accepted: --

    Published Online: May. 12, 2020

    The Author Email: Shao-lei ZHANG (jianjianyuanqu11@163.com)

    DOI:10.3788/ope.20192712.2683

    Topics