Optics and Precision Engineering, Volume. 31, Issue 11, 1684(2023)

Small sample data augmentation and abundances inversion of minerals hyperspectral

Ling ZHU*... Ming LI and Kai QIN |Show fewer author(s)
Author Affiliations
  • National Key Laboratory of Remote Sensing Information and Imagery Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing100029, China
  • show less
    References(14)

    [1] [1] 1丁文清, 丁林. 岩矿高光谱遥感及其在青藏高原的应用前景[J]. 地质科学, 2022, 57(3):924-944. doi: 10.12017/dzkx.2022.053DINGW Q, DINGL. Hyperspectral remote sensing of rock and mineral and its application prospects on the Tibetan Plateau[J]. Chinese Journal of Geology, 2022, 57(3):924-944.(in Chinese). doi: 10.12017/dzkx.2022.053

    [2] [2] 2张成业, 秦其明, 陈理, 等. 高光谱遥感岩矿识别的研究进展[J]. 光学 精密工程, 2015, 23(8):2407-2418. doi: 10.3788/ope.20152308.2407ZHANGCH Y, QINQ M, CHENL, et al. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Opt. Precision Engi., 2015, 23(8):2407-2418.(in Chinese). doi: 10.3788/ope.20152308.2407

    [3] [3] 3董新丰, 甘甫平, 李娜, 等. 高分五号高光谱影像矿物精细识别[J]. 遥感学报, 2020, 24(4): 454-464.DONGX F, GANF P, LIN, et al. Fine mineral identification of GF-5 hyperspectral image[J]. Journal of Remote Sensing, 2020, 24(4): 454-464.(in Chinese)

    [4] [4] 4叶珍, 白璘, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8): 1737-1763. doi: 10.11834/jig.210198YEZH, BAIL, HEM Y. Review of spatial-spectral feature extraction for hyperspectral image[J]. Journal of Image and Graphics, 2021, 26(8): 1737-1763.(in Chinese). doi: 10.11834/jig.210198

    [5] S OZKAN, B KAYA, G B AKAR. EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57, 482-496(2019).

    [6] X R ZHANG, Y J SUN, J Y ZHANG et al. Hyperspectral unmixing via deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 15, 1755-1759(2018).

    [7] Y C SU, J LI, A PLAZA et al. DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57, 4309-4321(2019).

    [8] [8] 8韩竹, 高连如, 张兵, 等. 高分五号高光谱图像自编码网络非线性解混[J]. 遥感学报, 2020, 24(4): 388-400.HANZH, GAOL R, ZHANGB, et al. Nonlinear unmixing of hyperspectral image self-coding network with high score No.5[J]. National Remote Sensing Bulletin, 2020, 24(4): 388-400.(in Chinese)

    [9] [9] 9慕晓冬, 白坤, 尤轩昂, 等. 基于对比学习方法的遥感影像特征提取与分类[J]. 光学 精密工程, 2021, 29(9)2222-2234. doi: 10.37188/OPE.20212909.2222MUX D, BAIK, YOUX A, et al. Remote sensing image feature extraction and classification based on contrastive learning method[J]. Opt. Precision Eng., 2021, 29(9): 2222-2234. doi: 10.37188/OPE.20212909.2222

    [10] [10] 10王忠良, 何密, 叶珍, 等. 线性混合光谱模型高光谱压缩感知[J]. 遥感学报, 2020, 24(3):277-289.WANGZH L, HEM, YEZH, et al. For hyperspectral compressed sensing method on linear mixed spectrum model[J]. Journal of Remote Sensing, 2020, 24(3):277-289.(in Chinese)

    [11] [11] 11王喆, 赵哲, 闫柏琨, 等. 基于Hapke模型混合岩矿粉末反射率光谱模拟[J]. 国土资源遥感, 2017, 29(1): 186-191.WANGZH, ZHAOZH, YANB K, et al. Simulation of bi-directional reflectance on mixed minerals based on Hapke photometric model[J]. Remote Sensing for Land & Resources, 2017, 29(1): 186-191.(in Chinese)

    [12] K QIN, F Y GE, Y J ZHAO et al. Hapke data augmentation for deep learning-based hyperspectral data analysis with limited samples. IEEE Geoscience and Remote Sensing Letters, 18, 886-890(2021).

    [13] B HAPKE. Bidirectional reflectance spectroscopy. Icarus, 195, 918-926(2008).

    [14] L WANG, D LIU, Q WANG et al. Spectral unmixing model based on least squares support vector machine with unmixing residue constraints. Geoscience and Remote Sensing Letters, 10, 1592-1596(2013).

    Tools

    Get Citation

    Copy Citation Text

    Ling ZHU, Ming LI, Kai QIN. Small sample data augmentation and abundances inversion of minerals hyperspectral[J]. Optics and Precision Engineering, 2023, 31(11): 1684

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Aug. 18, 2022

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email: ZHU Ling (thal_zhu@163.com)

    DOI:10.37188/OPE.20233111.1684

    Topics