Optical Instruments, Volume. 45, Issue 6, 14(2023)
MSA-Net: few-shot object detection with multi-stage attention mechanism
[5] [5] FINN C, ABBEEL P, LEVINE S. Modelagnostic metalearning f fast adaptation of deep wks[C]Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR. g, 2017: 1126 1135.
[6] [6] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation wk f fewshot learning[C]Proceedings of 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City: IEEE, 2018: 1199 1208.
[7] [7] SNELL J, SWERSKY K, ZEMEL R. Prototypical wks f fewshot learning[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. Long Beach: Curran Associates Inc. , 2017: 4080 4090.
[8] [8] CHEN H, WANG Y L, WANG G Y, et al. LSTD: a lowshot transfer detect f object detection [C]Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New leans: AAAI Press, 2018: 2836 2843.
[9] [9] WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple fewshot object detection[C]Proceedings of the 37th International Conference on Machine Learning. Vienna: JMLR. g, 2020: 920929.
[10] [10] WANG Y X, RAMANAN D, HEBERT M. Metalearning to detect rare objects[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9925 9934.
[11] [11] YAN X P, CHEN Z L, XU A N, et al. Meta RCNN: towards general solver f instancelevel lowshot learning[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9577 9586.
[13] [13] QIAO L M, ZHAO Y X, LI Z Y, et al. DeFRCN: decoupled faster RCNN f fewshot object detection[EBOL]. (2021–08–20). https:arxiv.gabs2108.09017.
[14] [14] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 2117 2125.
[15] [15] KIM Y, KANG B N, KIM D. SAN: learning relationship between convolutional features f multiscale object detection[C]Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 316 331.
[16] [16] WU J X, LIU S T, HUANG D, et al. Multiscale positive sample refinement f fewshot object detection[C]Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 456 472.
[18] [18] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014: 740 755.
[19] [19] XIAO Y, LEPETIT V, MARLET R. Fewshot object detection viewpoint estimation f objects in the wild[C]Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 192 210.
[20] [20] KANG B Y, LIU Z, WANG X, et al. Fewshot object detection via feature reweighting[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8420 8429.
[21] [21] HE K M, GKIOXARI G, DOLLR P, et al. Mask RCNN[C]Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961 2969.
[24] [24] DENG J, DONG W, SOCHER R, et al. Image: a lange scale hierarchical image database [C]Proceedings of 2009 IEEE Conference on Computer Vision Pattern Recognition. Miami: IEEE, 2009: 248255.
[25] [25] ZHU X Z, SU W J, LU L W, et al. Defmable DETR: defmable transfmers f endtoend object detection[EBOL]. (2021–3–18). https:arxiv.gabs2010.04159.
[26] [26] KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representativebased metric learning f classification fewshot object detection[C]Proceedings of 2019 IEEECVF Conference on Computer Vision Pattern Recognition. Long Beach: IEEE, 2019: 5197 5206.
[27] [27] ZHU C C, CHEN F Y, AHMED U, et al. Semantic relation reasoning f shotstable fewshot object detection[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition. Nashville: IEEE, 2021: 8782 8791.
[28] [28] SUN B, LI B H, CAI S C, et al. FSCE: fewshot object detection via contrastive proposal encoding[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition. Nashville: IEEE, 2021: 7352 7362.
Get Citation
Copy Citation Text
Yingwei TANG, Rongfu ZHANG, Ran DING, Jie ZHANG. MSA-Net: few-shot object detection with multi-stage attention mechanism[J]. Optical Instruments, 2023, 45(6): 14
Category:
Received: Feb. 3, 2023
Accepted: --
Published Online: Feb. 29, 2024
The Author Email: ZHANG Rongfu (zrf@usst.edu.cn)