Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 23(2023)
Construction of Ag SPR-Promoted S-Scheme SnNb2O6/Ag3PO4 Heterostructure for Enhanced Visible-Light-Driven Photocatalytic Activity
[1] [1] ZHAO Z W, LI X F, DAI K, et al. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance[J]. J Mater Sci Technol, 2022, 117: 109-119.
[2] [2] WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for congo red photodegradation[J]. Chin J Catal, 2021, 42(1): 56-68.
[4] [4] MEI F F, DAI K, ZHANG J, F, et al. Ultrathin indium vanadate/cadmium selenide-amine step-scheme heterojunction with interfacial chemical bonding for promotion of visible-light-driven carbon dioxide reduction[J]. J Colloid Interface Sci, 2022, 608: 1846-1856.
[5] [5] WANG D, YIN F X, CHENG B, et al. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation[J]. Rare Metals, 2021, 40(9): 2369-2380.
[6] [6] JIANG Z M, CHEN Q, ZHENG Q Q, et al. Constructing 1D/2D schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution[J]. Acta Phys-Chim Sin, 2020, 37(6): 2010059.
[7] [7] LI X F, ZHANG J F, HUO Y, et al. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight[J]. Appl Catal B: Environ, 2021, 280: 119452.
[8] [8] WANG L X, XIA Y, YU J G. Hydrogen-bond activation of N2 molecules and photocatalytic nitrogen fixation[J]. Chem, 2021, 7(8): 1983-1985.
[9] [9] MENG A Y, CHENG B, TAN H Y, et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity[J]. Appl Catal B: Environ, 2021, 289: 120039.
[10] [10] LIU L, Z, DAI K, ZHANG J, F, et al. Plasmonic Bi-enhanced ammoniated alpha-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction[J]. J Colloid Interface Sci, 2021, 604: 844-855.
[11] [11] ZHANG J F, FU J W, DAI K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity[J]. J Mater Sci Technol, 2022, 116: 192-198.
[12] [12] MENG A Y, ZHANG L Y, CHENG B, et al. Dual cocatalysts in TiO2 photocatalysis[J]. Adv Mater, 2019, 31(30): 1807660.
[13] [13] WANG P, LI H T, CAO Y J, et al. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst[J]. Acta Phys-Chim Sin, 2021, 37(6): 2008047.
[14] [14] LOW J, X, DAI B, Z, TONG T, et al. In Situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-Scheme TiO2/CdS composite film photocatalyst[J]. Adv Mater, 2019, 31(6): 1807920.
[15] [15] WANG P, XU S, Q, XIA Y, et al. Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag3PO4[J]. Phys Chem Chem Phys, 2017, 19(16): 10309-10316.
[16] [16] YU H G, CAO G Q, CHEN F, et al. Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst[J]. Appl Catal B: Environ, 2014, 160-161: 658-665.
[19] [19] HU T P, DAI K, ZHANG J F, et al. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation[J]. Appl Catal B: Environ, 2020, 269: 118844.
[20] [20] WANG Z W, WANG H, SHI Y Z, et al. CuPd alloy decorated SnNb2O6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light[J]. Chem Eng J, 2022, 429: 132018.
[21] [21] LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694
[22] [22] XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.
[23] [23] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chem Rev, 2022, https://doi.org/10.1021/acs. chemrev.1c00473.
[24] [24] HUANG Y, MEI F F, ZHANG J F, et al. Construction of 1D/2D W18O49/porous g-C3N4 S-Scheme heterojunction with enhanced photocatalytic H2 evolution[J]. Acta Phys-Chim Sin, 2021, 38(7): 2108028.
[25] [25] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S‐Scheme photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668.
[26] [26] SHEN R C, LU X Y, ZHENG Q Q, et al. Tracking S-Scheme charge transfer pathways in Mo2C/CdS H2‐evolution photocatalysts[J]. Sol RRL, 2021, 5(7): 2100177.
[27] [27] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chem Eng J, 2021, 409: 127377.
[28] [28] ZHANG J F, LV J L, DAI K, et al. Facile and green synthesis of novel porous g-C3N4/Ag3PO4 composite with enhanced visible light photocatalysis[J]. Ceram Int, 2017, 43(1): 1522-1529.
[29] [29] HUANG M, LIU J X, HUANG P, et al. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries[J]. Rare Metals, 2021, 40(2): 452-432.
[30] [30] KE X C, ZHANG J F, DAI K, et al. Integrated S‐scheme heterojunction of amine‐functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 nanosheets for robust solar‐driven CO2 conversion[J]. Sol RRL, 2021, 5(4): 2000805.
[31] [31] YANG H, ZHANG J F, DAI K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction[J]. Chin J Catal, 2022, 43(2): 255-264.
[32] [32] HUANG Y, ZHANG J F, DAI K, et al. Efficient solar-driven CO2 reduction on aminated 2D/2D BiOBr/CdS-diethylenetriamine S-scheme heterojunction[J]. Ceram Int, 2022, 48(6): 8423-8432.
[33] [33] MEI F F, LI Z, DAI K, et al. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production[J]. Chin J Catal, 2020, 41(1): 41-49.
[34] [34] XUN S H, ZHANG Z Y, WANG T Y, et al. Synthesis of novel metal nanoparitcles/SnNb2O6 nanosheets plasmonic nanocomposite photocatalysts with enhanced visible-light photocatalytic activity and mechanism insight[J]. J Alloys Compd, 2016, 685: 647-655.
[35] [35] ZHANG Z Y, JIANG D L, LI D, et al. Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: Synergistic effect and mechanism insight[J]. Appl Catal B: Environ, 2016, 183: 113-123.
[36] [36] VALLEJO W, CANTILLO A, D?AZ-URIBE C. Methylene blue photodegradation under visible irradiation on Ag-doped ZnO thin films[J]. Int J Photoenergy, 2020, 2020: 1-11.
Get Citation
Copy Citation Text
DAI Kai, ZHANG Haibo, ZHANG Jinfeng, WANG Zhongliao. Construction of Ag SPR-Promoted S-Scheme SnNb2O6/Ag3PO4 Heterostructure for Enhanced Visible-Light-Driven Photocatalytic Activity[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 23
Special Issue:
Received: Jul. 19, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: