Acta Photonica Sinica, Volume. 50, Issue 8, 0850211(2021)
Pump-probe Microscopy: Applications in Biomedicine and Materials Science (Invited)
[1] ZEWAIL A H. Laser femtochemistry[J]. Science, 242, 1645(1988).
[2] ZHONG D, WAN C et al. Femtosecond dynamics of a drug-protein complex: Daunomycin with Apo riboflavin-binding protein[J]. Proceedings of the National Academy of Sciences, 98, 11873(2001).
[3] PEON J, BAGCHI B et al. Biological water: femtosecond dynamics of macromolecular hydration[J]. The Journal of Physical Chemistry B, 106, 12376-12395(2002).
[4] DONG C Y, FRENCH T et al. Fluorescence lifetime imaging by asynchronous pump-probe microscopy[J]. Biophysical Journal, 69, 2234-2242(1995).
[5] BUEHLER C, DONG C Y et al. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy[J]. Biophysical Journal, 79, 536-549(2000).
[6] DAN F, TONG Y, THOMAS E M et al. Two-color, two-photon, and excited-state absorption microscopy[J]. Journal of Biomedical Optics, 12, 1-8(2007).
[7] PILETIC I R, MATTHEWS T E, WARREN W S. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins[J]. The Journal of Physical Chemistry A, 114, 11483-11491(2010).
[8] OTHONOS A, CHRISTOFIDES C. Spatial dependence of ultrafast carrier recombination centers of phosphorus-implanted and annealed silicon wafers[J]. Applied Physics Letters, 81, 856-858(2002).
[9] FUJII Y, HORIUCHI K, KANNARI F et al. Optical imaging of defect density distribution in ion-implanted GaAs using ultrafast carrier dynamics[J]. Japanese Journal of Applied Physics, 43, 184-185(2004).
[10] YOON H W, WAKE D R, WOLFE J P et al. In-plane transport of photoexcited carriers in GaAs quantum wells[J]. Physical Review B, 46, 13461-13470(1992).
[11] GABRIEL M M, KIRSCHBROWN J R, CHRISTESEN J D et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy[J]. Nano Letters, 13, 1336-1340(2013).
[12] DAYEH S et al. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy[M]. Ultrafast Dynamics in Molecules, 128-143(2013).
[13] CAREY C R, YU Y, KUNO M et al. Ultrafast transient absorption measurements of charge carrier dynamics in single II-VI nanowires[J]. The Journal of Physical Chemistry C, 113, 19077-19081(2009).
[14] MAJOR T A, PETCHSANG N et al. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires[J]. ACS Nano, 6, 5274-5282(2012).
[15] SHI H Y, HUANG L et al. Imaging the extent of plasmon excitation in Au nanowires using pump-probe microscopy[J]. Optics Letters, 38, 1265-1267(2013).
[16] GRANCINI G, MARTINO N, BIANCHI M et al. Ultrafast spectroscopic imaging of exfoliated graphene[J]. Physica Status Solidi (b), 249, 2497-2499(2012).
[17] GAO B, HARTLAND G V, HUANG L. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes[J]. ACS Nano, 6, 5083-5090(2012).
[18] KHITROVA G, BERMAN P R, SARGENT M. Theory of pump–probe spectroscopy[J]. Journal of the Optical Society of America B, 5, 160-170(1988).
[19] FISCHER M C, WILSON J W, ROBLES F E et al. Invited review article: pump-probe microscopy[J]. Review of Scientific Instruments, 87(2016).
[20] GRUMSTRUP E M, GABRIEL M M, CATING E E M et al. Pump-probe microscopy: visualization and spectroscopy of ultrafast dynamics at the nanoscale[J]. Chemical Physics, 458, 30-40(2015).
[21] ZHU Y, CHENG J X. Transient absorption microscopy: Technological innovations and applications in materials science and life science[J]. The Journal of Chemical Physics, 152(2020).
[22] GABRIEL M M, GRUMSTRUP E M, KIRSCHBROWN J R et al. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy[J]. Nano Letters, 14, 3079-3087(2014).
[23] HUANG L, HARTLAND G V, CHU L-Q et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene[J]. Nano Letters, 10, 1308-1313(2010).
[24] GAO B, HARTLAND G, FANG T et al. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy[J]. Nano Letters, 11, 3184-3189(2011).
[25] GRAHAM M W, SHI S-F, WANG Z et al. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene[J]. Nano Letters, 13, 5497-5502(2013).
[26] MURPHY S, HUANG L. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film[J]. Journal of Physics, 25, 144203(2013).
[27] MIAO X, ZHANG G, WANG F et al. Layer-dependent ultrafast carrier and coherent phonon dynamics in black phosphorus[J]. Nano Letters, 18, 3053-3059(2018).
[28] SHI H, YAN R, BERTOLAZZI S et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals[J]. ACS Nano, 7, 1072-1280(2013).
[29] CUI Q, CEBALLOS F, KUMAR N et al. Transient absorption microscopy of monolayer and bulk WSe2[J]. ACS Nano, 8, 2970-2976(2014).
[30] YAMAGUCHI H, MOHITE A D et al. Ultrafast optical microscopy of single monolayer molybdenum disulfide flakes[J]. Scientific Reports, 6, 21601(2016).
[31] GE S, LIU X, QIAO X et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide[J]. Scientific Reports, 4, 5722(2014).
[32] GUO Z, MANSER J S, WAN Y et al. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy[J]. Nature Communications, 6, 7471(2015).
[33] SIMPSON M J, DOUGHTY B, YANG B et al. Spatial localization of excitons and charge carriers in hybrid perovskite thin films[J]. The Journal of Physical Chemistry Letters, 6, 3041-3047(2015).
[34] SIMPSON M J, DOUGHTY B, YANG B et al. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy[J]. The Journal of Physical Chemistry Letters, 7, 1725-31(2016).
[35] GUO Z, WAN Y, YANG M et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. Science, 356, 59(2017).
[36] HILL A H, SMYSER K E, KENNEDY C L et al. Screened charge carrier transport in methylammonium lead iodide perovskite thin films[J]. The Journal of Physical Chemistry Letters, 8, 948-953(2017).
[37] GUO Z, ZHOU N, WILLIAMS O F et al. Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope[J]. The Journal of Physical Chemistry C, 122, 10650-10656(2018).
[38] SNAIDER J M, GUO Z, WANG T et al. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films[J]. ACS Energy Letters, 3, 1402-1208(2018).
[39] SCHULER B, LIPMAN E A, EATON W A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy[J]. Nature, 419, 743-747(2002).
[40] LU H P, XUN L, XIE X S. Single-molecule enzymatic dynamics[J]. Science, 282, 1877(1998).
[41] BALCI H, ISHITSUKA Y et al. Advances in single-molecule fluorescence methods for molecular biology[J]. Annual Review of Biochemistry, 77, 51-76(2008).
[42] PETERMAN E J G, SOSA H, MOERNER W E. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors[EB/OL]. Annual Review of Physical Chemistry, 091602.094340, 55(2004).
[43] MERTZ J. Nonlinear microscopy: new techniques and applications[J]. Current Opinion in Neurobiology, 14, 610-616(2004).
[44] PETTY H R. Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology[J]. Microscopy Research and Technique, 70, 687-709(2007).
[45] MIN W, FREUDIGER C W, LU S et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy[J]. Annual Review of Physical Chemistry, 62, 507-530(2011).
[46] MIN W, LU S, CHONG S et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy[J]. Nature, 461, 1105-1109(2009).
[47] GE S, LI C, ZHANG Z et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation[J]. Nano Letters, 15, 4650-4656(2015).
[48] WANG X, SHINOKITA K et al. Direct and indirect exciton dynamics in few-layered ReS2 revealed by photoluminescence and pump-probe spectroscopy[J]. Advanced Functional Materials, 29, 1806169(2019).
[49] NAKAGAWA K, TSUCHIYA S, YAMADA J et al. Pump- and probe-polarization analyses of ultrafast carrier dynamics in organic superconductors[J]. Journal of Superconductivity and Novel Magnetism, 29, 3065-3069(2016).
[50] FREUDIGER C W, MIN W, SAAR B G et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy[J]. Science, 322, 1857(2008).
[51] LING J, MIAO X, SUN Y et al. Vibrational imaging and quantification of two-dimensional hexagonal boron nitride with stimulated raman scattering[J]. ACS Nano, 13, 14033-14040(2019).
[52] WANG P, SLIPCHENKO M N, MITCHELL J et al. Far-field imaging of non-fluorescent species with subdiffraction resolution[J]. Nature Photonics, 7, 449-453(2013).
[53] SIMPSON M J, GLASS K E, WILSON J W et al. Pump-probe microscopic imaging of jurassic-aged eumelanin[J]. The Journal of Physical Chemistry Letters, 4, 1924-1927(2013).
[54] ROBLES F E, WILSON J W et al. Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential[J]. Biomedical Optics Express, 6, 3631-3645(2015).
[55] FU D, YE T, MATTHEWS T E et al. High-resolution in vivo imaging of blood vessels without labeling[J]. Optics Letters, 32, 2641-2643(2007).
[56] FU D, MATTHEWS T E, YE Tong et al. Label-free in vivo optical imaging of microvasculature and oxygenation level[J]. Journal of Biomedical Optics, 13, 1-3(2008).
[57] ZHANG L, ZOU X, ZHANG B et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy[J]. Theranostics, 8, 4129-4140(2018).
[58] MATTHEWS T E, PILETIC I R, SELIM M A et al. Pump-probe imaging differentiates melanoma from melanocytic nevi[J]. Science Translational Medicine, 3, 71ra15(2011).
[59] POGNA E A A, MARSILI M, DE FAZIO D et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2[J]. ACS Nano, 10, 1182-1188(2016).
[60] WANG H, ZHANG C, RANA F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2[J]. Nano Letters, 15, 339-345(2015).
[61] KAR S, SU Y, NAIR R R et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy[J]. ACS Nano, 9, 12004-12010(2015).
[62] BORZDA T, GADERMAIER C, VUJICIC N et al. Charge photogeneration in few-layer MoS2[J]. Advanced Functional Materials, 25, 3351-3358(2015).
[63] ZHANG L, SHEN S, LIU Z et al. Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated Raman scattering and transient absorption microscopy[J]. Advanced Biosystems, 1, 1700013(2017).
[64] SCHMIDT R, BERGHäUSER G, SCHNEIDER R et al. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2[J]. Nano Letters, 16, 2945-2950(2016).
[65] RUPPERT C, CHERNIKOV A, HILL H M et al. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation[J]. Nano Letters, 17, 644-651(2017).
[66] KIM J, HONG X, JIN C et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers[J]. Science, 346, 1205(2014).
[67] STEINLEITNER P, MERKL P, NAGLER P et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2[J]. Nano Letters, 17, 1455-1260(2017).
[68] SINGH A, MOODY G, WU S et al. Coherent electronic coupling in atomically thin MoSe2[J]. Physical Review Letters, 112, 216804(2014).
[69] GAO F, GONG Y, TITZE M et al. Valley trion dynamics in monolayer MoSe2[J]. Physical Review B, 94, 245413(2016).
[70] MENG S J, SHI H Y, JIANG H et al. Anisotropic charge carrier and coherent acoustic phonon dynamics of black phosphorus studied by transient absorption microscopy[J]. Journal of Physical Chemistry C, 123, 20051-20058(2019).
[71] ZHANG G W, CHAVES A, HUANG S Y et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus[J]. Science Advances, 4, 6(2018).
[72] WANG X M, JONES A M, SEYLER K L et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 10, 517-521(2015).
[73] ZHANG G W, HUANG S Y, CHAVES A et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 8, 9(2017).
[74] TRAN V, SOKLASKI R, LIANG Y F et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 89, 6(2014).
[75] LIU H, NEAL A T, ZHU Z et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 8, 4033-4041(2014).
[76] LI L, KIM J, JIN C et al. Direct observation of the layer-dependent electronic structure in phosphorene[J]. Nature Nanotechnology, 12, 21-25(2017).
[77] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).
[78] NOVOSELOV K S, MISHCHENKO A, CARVALHO A et al. 2D materials and van der Waals heterostructures[J]. Science, 353(2016).
[79] JIN C, MA E Y, KARNI O et al. Ultrafast dynamics in van der Waals heterostructures[J]. Nature Nanotechnology, 13, 994-1003(2018).
[80] MASSICOTTE M, SCHMIDT P, VIALLA F et al. Picosecond photoresponse in van der Waals heterostructures[J]. Nature Nanotechnology, 11, 42-46(2016).
[81] GONG C, KIM E M, WANG Y et al. Multiferroicity in atomic van der Waals heterostructures[J]. Nature Communications, 10, 2657(2019).
[82] HUNT B, SANCHEZ-YAMAGISHI J D, YOUNG A F et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure[J]. Science, 340, 1427(2013).
[83] WANG K, HUANG B, TIAN M et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy[J]. ACS Nano, 10, 6612-6622(2016).
[84] YUAN L, CHUNG T F et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures[J]. Science Advances, 4(2018).
[85] ZHU T, YUAN L, ZHAO Y et al. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures[J]. Science Advances, 4(2018).
[86] LAURET J S, VOISIN C, CASSABOIS G et al. Ultrafast carrier dynamics in single-wall carbon nanotubes[J]. Physical Review Letters, 90(2003).
[87] JUNG Y, SLIPCHENKO M N, LIU C H et al. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope[J]. Physical Review Letters, 105, 217401(2010).
[88] TONG L, LIU Y, DOLASH B D et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy[J]. Nature Nanotechnology, 7, 56-61(2012).
Get Citation
Copy Citation Text
Simin WU, Bohan ZHANG, Bin ZHENG, Minbiao JI. Pump-probe Microscopy: Applications in Biomedicine and Materials Science (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850211
Category: Special Issue for Ultrafast Optics
Received: Jun. 21, 2021
Accepted: Jul. 28, 2021
Published Online: Sep. 1, 2021
The Author Email: