Photonics Research, Volume. 9, Issue 4, 630(2021)

Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser

Pan Wang1, Jiapeng Huang1,4、*, Shangran Xie1,5、*, Johann Troles2, and Philip St.J. Russell1,3
Author Affiliations
  • 1Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
  • 2Université de Rennes I, Sciences Chimiques de Rennes, 35042 Rennes, France
  • 3Friedrich-Alexander-Universität, 91058 Erlangen, Germany
  • 4e-mail: jiapeng.huang@mpl.mpg.de
  • 5e-mail: shangran.xie@mpl.mpg.de
  • show less
    References(39)

    [1] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [2] A. B. Seddon. A prospective for new mid-infrared medical endoscopy using chalcogenide glass. Int. J. Appl. Glass Sci., 2, 177-191(2011).

    [3] M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, T. Manzur. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl. Opt., 51, 2794-2807(2012).

    [4] S. Lambert-Girard, M. Allard, M. Piché, F. Babin. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements. Appl. Opt., 54, 1647-1656(2015).

    [5] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [6] Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R. Wang. Mid-infrared supercontinuum covering 2.0–16  μm in a low-loss telluride single-mode fiber. Laser Photon. Rev., 11, 1700005(2017).

    [7] Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, P. Xu. 1.4–7.2  μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Opt. Lett., 42, 3458-3461(2017).

    [8] S. Xie, N. Tolstik, J. C. Travers, E. Sorokin, C. Caillaud, J. Troles, P. St.J. Russell, I. T. Sorokina. Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser. Opt. Express, 24, 12406-12413(2016).

    [9] S. O. Leonov, Y. Wang, V. S. Shiryaev, G. E. Snopatin, B. S. Stepanov, V. G. Plotnichenko, E. Vicentini, A. Gambetta, N. Coluccelli, C. Svelto, P. Laporta, G. Galzerano. Coherent mid-infrared supercontinuum generation in tapered suspended-core As39Se61 fibers pumped by a few-optical-cycle Cr:ZnSe laser. Opt. Lett., 45, 1346-1349(2020).

    [10] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, J. Biegert. High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate. Nat. Photonics, 9, 721-724(2015).

    [11] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [12] S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, P. St.J. Russell. As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation. Opt. Lett., 39, 5216-5219(2014).

    [13] X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, P. St.J. Russell. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics, 9, 133-139(2015).

    [14] C. Yao, Z. Jia, Z. Li, S. Jia, Z. Zhao, L. Zhang, Y. Feng, G. Qin, Y. Ohishi, W. Qin. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 5, 1264-1270(2018).

    [15] S. Venck, F. St-Hilaire, L. Brilland, A. N. Ghosh, R. Chahal, C. Caillaud, M. Meneghetti, J. Troles, F. Joulain, S. Cozic, S. Poulain, G. Huss, M. Rochette, J. M. Dudley, T. Sylvestre. 2–10  μm mid-infrared fiber-based supercontinuum laser source: experiment and simulation. Laser Photon. Rev., 14, 2000011(2020).

    [16] D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, A. Fuerbach. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).

    [17] Y. Yu, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, B. Luther-Davies. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photon. Rev., 8, 792-798(2014).

    [18] N. Nader, A. Kowligy, J. Chiles, E. J. Stanton, H. Timmers, A. J. Lind, F. C. Cruz, D. M. B. Lesko, K. A. Briggman, S. W. Nam, S. A. Diddams, R. P. Mirin. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 6, 1269-1276(2019).

    [19] J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, P. K. A. Wai. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. J. Lightwave Technol., 35, 2994-3002(2017).

    [20] M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, C. Grillet. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. Optica, 5, 360-366(2018).

    [21] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [22] J. Chiles, N. Nader, E. J. Stanton, D. Herman, G. Moody, J. Zhu, J. C. Skehan, B. Guha, A. Kowligy, J. T. Gopinath, K. Srinivasan, S. A. Diddams, I. Coddington, N. R. Newbury, J. M. Shainline, S. W. Nam, R. P. Mirin. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 6, 1246-1254(2019).

    [23] M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, M. Lončar. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).

    [24] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée. Femtosecond fiber lasers reach the mid-infrared. Optica, 2, 623-626(2015).

    [25] S. Antipov, D. D. Hudson, A. Fuerbach, S. D. Jackson. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).

    [26] C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, S. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [27] J. Huang, M. Pang, X. Jiang, F. Köttig, D. Schade, W. He, M. Butryn, P. St.J. Russell. Sub-two-cycle octave-spanning mid-infrared fiber laser. Optica, 7, 574-579(2020).

    [28] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6, 423-431(2012).

    [29] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [30] V. S. Shiryaev, M. F. Churbanov. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids, 377, 225-230(2013).

    [31] R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B, 21, 1146-1155(2004).

    [32] M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, P. St.J. Russell. Complex Faraday rotation in microstructured magneto-optical fiber waveguides. Adv. Mater., 23, 2681-2688(2011).

    [33] N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, P. St.J. Russell. Supercontinuum generation in chalcogenide-silica step-index fibers. Opt. Express, 19, 21003-21010(2011).

    [34] N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, P. St.J. Russell. Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide. Opt. Express, 21, 10969-10977(2013).

    [35] W. Wang, H. Yang, P. Tang, C. Zhao, J. Gao. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths. Opt. Express, 21, 11215-11226(2013).

    [36] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [37] B. Kuyken, M. Billet, F. Leo, K. Yvind, M. Pu. Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide. Opt. Lett., 45, 603-606(2020).

    [38] N. Singh, D. Vermulen, A. Ruocco, N. Li, E. Ippen, F. X. Kärtner, M. R. Watts. Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express, 27, 31698-31712(2019).

    [39] J. Wei, C. Ciret, M. Billet, F. Leo, B. Kuyken, S. Gorza. Supercontinuum generation assisted by wave trapping in dispersion-managed integrated silicon waveguides. Phys. Rev. Appl., 14, 054045(2020).

    Tools

    Get Citation

    Copy Citation Text

    Pan Wang, Jiapeng Huang, Shangran Xie, Johann Troles, Philip St.J. Russell, "Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser," Photonics Res. 9, 630 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 18, 2020

    Accepted: Feb. 11, 2021

    Published Online: Apr. 6, 2021

    The Author Email: Jiapeng Huang (jiapeng.huang@mpl.mpg.de), Shangran Xie (shangran.xie@mpl.mpg.de)

    DOI:10.1364/PRJ.415339

    Topics