Journal of Inorganic Materials, Volume. 39, Issue 11, 1197(2024)

Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents

Zezhu ZHOU1... Zihui LIANG1,2, Jing LI1,* and Congcong WU1,* |Show fewer author(s)
Author Affiliations
  • 11. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • 22. National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China
  • show less
    References(33)

    [3] M KIM, J JEONG, H LU et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 302(2022).

    [5] Y YANG, C LIU, Y DING et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nature Energy, 316(2024).

    [6] M LI, Z ZHU, Z WANG et al. High-quality hybrid perovskite thin films by post-treatment technologies in photovoltaic applications. Advanced Materials, 2309428(2023).

    [7] Z HUI, Z XU, C ZHU et al. Progress on Large-area organic- inorganic hybrid perovskite films and its photovoltaic application. Journal of Inorganic Materials, 457(2024).

    [8] D LI, D ZHANG, K S LIM et al. A review on scaling up perovskite solar cells. Advanced Functional Materials, 2008621(2021).

    [9] C CHEN, J GAO, S P FENG. The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent. International Materials Reviews, 301(2023).

    [11] H CHOI, K CHOI, Y CHOI et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods, 1900569(2019).

    [12] A NG, Z REN, H HU et al. A Cryogenic process for antisolvent- free high-performance perovskite solar cells. Advanced Materials, 1804402(2018).

    [13] E J CASSELLA, E L K SPOONER, J A SMITH et al. Binary solvent system used to fabricate fully annealing-free perovskite solar cells. Advanced Energy Materials, 2203468(2023).

    [14] Z LIANG, Y SHI, T YUAN et al. Distinct reaction route toward high photovoltaic performance: perovskite salts versus crystals. ACS Applied Energy Materials, 2247(2023).

    [15] C WU, K WANG, J LI et al. Volatile solution: the way toward scalable fabrication of perovskite solar cells?. Matter, 775(2021).

    [16] C WU, K WANG, Y YAN et al. Fullerene polymer complex inducing dipole electric field for stable perovskite solar cells. Advanced Functional Materials, 1804419(2019).

    [18] Y CHEN, Q MENG, Y XIAO et al. Mechanism of PbI2in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Applied Materials & Interfaces, 44101(2019).

    [19] B GAO, J HU, Z ZUO et al. Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells. ACS Applied Materials & Interfaces, 40062(2022).

    [20] Y GAO, C LIU, Y XIE et al. Can nanosecond laser achieve high- performance perovskite solar modules with aperture area efficiency over 21%?. Advanced Energy Materials, 2202287(2022).

    [21] Y XIE, J DUAN, L PENG et al. Understanding the mechanism of PbCl2 Additive for MAPbI3-based perovskite solar cells. Advanced Photonics Research, 2100012(2021).

    [22] X LING, J GUO, C SHEN et al. High-throughput deposition of recyclable SnO2 electrodes toward efficient perovskite solar cells. Small, 2308579(2023).

    [23] B JIN, Y MING, Z WU et al. Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 106936(2022).

    [24] J J ZHAO, X SU, Z MI et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 96(2021).

    [25] X DAI, L ZHANG, Y QIAN et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering. Journal of Inorganic Materials, 1089(2023).

    [26] J CHENG, I CHOI, W KIM et al. Wide-band-gap (2.0 eV) perovskite solar cells with a VOC of 1.325 V fabricated by a green- solvent strategy. ACS Applied Materials & Interfaces, 23077(2023).

    [27] X JIANG, B ZHANG, G YANG et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, e202302462(2023).

    [29] S CHEN, X YU, X CAI et al. PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells. RSC Advances, 648(2016).

    [30] P WANG, J ZHAO, J LIU et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 51(2017).

    [32] F GALATOPOULOS, A SAVVA, I T PAPADAS et al. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 076102(2017).

    [33] B HAILEGNAW, N S SARICIFTCI, M C SCHARBER. Impedance spectroscopy of perovskite solar cells: studying the dynamics of charge carriers before and after continuous operation. Physica Status Solidi (A) - Applications and Materials Science, 2000291(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zezhu ZHOU, Zihui LIANG, Jing LI, Congcong WU. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 21, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: LI Jing (lijing68@hubu.edu.cn), WU Congcong (ccwu@hubu.edu.cn)

    DOI:10.15541/jim20240138

    Topics