Acta Optica Sinica, Volume. 42, Issue 3, 0327006(2022)

Research and Application of Metasurfaces in Quantum Optics

Xiaoshu Zhu, Jun Liu, Juanzi He, Shuming Wang*, Zhenlin Wang, and Shining Zhu
Author Affiliations
  • National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    References(104)

    [1] Wang S M, Liu H, Zhu S N. The quantum optical effects of metamaterial[J]. Chinese Journal of Quantum Electronics, 31, 419-427(2014).

    [2] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 1, 41-48(2007).

    [3] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007).

    [4] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 14, 8247-8256(2006).

    [5] Cai W S, Chettiar U K, Kildishev A V et al. Optical cloaking with metamaterials[J]. Nature Photonics, 1, 224-227(2007).

    [6] Smolyaninov I I, Smolyaninova V N, Kildishev A V et al. Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking[J]. Physical Review Letters, 102, 213901(2009).

    [7] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [8] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275, 376(2017).

    [9] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [10] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 408, 131-314(2005).

    [11] Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 453, 757-760(2008).

    [12] Lee J, Tymchenko M, Argyropoulos C et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 511, 65-69(2014).

    [13] Bouhelier A, Beversluis M, Hartschuh A et al. Near-field second-harmonic generation induced by local field enhancement[J]. Physical Review Letters, 90, 013903(2003).

    [14] Kim E M, Elovikov S S, Murzina T V et al. Surface-enhanced optical third-harmonic generation in Ag island films[J]. Physical Review Letters, 95, 227402(2005).

    [15] Kinkhabwala A, Yu Z F, Fan S H et al. Large single-molecule fluorescence enhancements produced by a bow tie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [16] Renger J. Quidant R, van Hulst N, et al. Surface-enhanced nonlinear four-wave mixing[J]. Physical Review Letters, 104, 046803(2010).

    [17] Park I Y, Kim S, Choi J et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses[J]. Nature Photonics, 5, 677-681(2011).

    [18] Sivis M, Duwe M, Abel B et al. Extreme-ultraviolet light generation in plasmonic nanostructures[J]. Nature Physics, 9, 304-309(2013).

    [19] Aouani H, Rahmani M, Navarro-Cía M et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology, 9, 290-294(2014).

    [20] Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nature Communications, 5, 5228(2014).

    [21] Han S, Kim H, Kim Y W et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 7, 13105(2016).

    [22] Zhong J H, Vogelsang J, Yi J M et al. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure[J]. Nature Communications, 11, 1464(2020).

    [23] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. 354(6314): aag2472(2016).

    [24] Zhang X Y, Cao Q T, Wang Z et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).

    [25] Miroshnichenko A E, Evlyukhin A B, Yu Y F et al. Nonradiating anapole modes in dielectric nanoparticles[J]. Nature Communications, 6, 8069(2015).

    [26] Grinblat G, Li Y, Nielsen M P et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode[J]. Nano Letters, 16, 4635-4640(2016).

    [27] Carletti L. Koshelev K, de Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).

    [28] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [29] Yang Y, Wang W, Boulesbaa A et al. Nonlinear Fano-resonant dielectric metasurfaces[J]. Nano Letters, 15, 7388-7393(2015).

    [30] Carletti L, Locatelli A, Stepanenko O et al. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas[J]. Optics Express, 23, 26544-26550(2015).

    [31] Shcherbakov M R, Neshev D N, Hopkins B et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response[J]. Nano Letters, 14, 6488-6492(2014).

    [32] Kruk S, Poddubny A, Smirnova D et al. Nonlinear light generation in topological nanostructures[J]. Nature Nanotechnology, 14, 126-130(2019).

    [33] Smirnova D, Kruk S, Leykam D et al. Third-harmonic generation in photonic topological metasurfaces[J]. Physical Review Letters, 123, 103901(2019).

    [34] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [35] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [36] Sun S, Zhou Z, Zhang C et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 11, 4445-4452(2017).

    [37] Wang S, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [38] Cerf N J, Bourennane M, Karlsson A et al. Security of quantum key distribution using d-level systems[J]. Physical Review Letters, 88, 127902(2002).

    [39] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).

    [40] Gisin N, Thew R. Quantum communication[J]. Nature Photonics, 1, 165-171(2007).

    [41] Scarani V, Bechmann-Pasquinucci H, Cerf N J et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 81, 1301-1350(2009).

    [42] Lo H K, Curty M, Tamaki K. Secure quantum key distribution[J]. Nature Photonics, 8, 595-604(2014).

    [43] Wang X L, Cai X D, Su Z E et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 518, 516-519(2015).

    [44] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 409, 46-52(2001).

    [45] O’Brien J L. Optical quantum computing[J]. Science, 318, 1567-1570(2007).

    [46] Lanyon B P, Barbieri M, Almeida M P et al. Simplifying quantum logic using higher-dimensional Hilbert spaces[J]. Nature Physics, 5, 134-140(2009).

    [47] Neeley M, Ansmann M, Bialczak R C et al. Emulation of a quantum spin with a superconducting phase qudit[J]. Science, 325, 722-725(2009).

    [48] Kaltenbaek R, Lavoie J, Zeng B et al. Optical one-way quantum computing with a simulated valence-bond solid[J]. Nature Physics, 6, 850-854(2010).

    [49] Aspuru-Guzik A, Walther P. Photonic quantum simulators[J]. Nature Physics, 8, 285-291(2012).

    [50] Georgescu I M, Ashhab S, Nori F. Quantum simulation[J]. Reviews of Modern Physics, 86, 153-185(2014).

    [51] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [52] Pirandola S, Bardhan B R, Gehring T et al. Advances in photonic quantum sensing[J]. Nature Photonics, 12, 724-733(2018).

    [53] Dai H, Shen Q, Wang C Z et al. Towards satellite-based quantum-secure time transfer[J]. Nature Physics, 16, 848-852(2020).

    [54] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).

    [55] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).

    [56] You J Q, Nori F. Atomic physics and quantum optics using superconducting circuits[J]. Nature, 474, 589-597(2011).

    [57] Diehl S, Micheli A, Kantian A et al. Quantum states and phases in driven open quantum systems with cold atoms[J]. Nature Physics, 4, 878-883(2008).

    [58] Leibfried D, Blatt R, Monroe C et al. Quantum dynamics of single trapped ions[J]. Reviews of Modern Physics, 75, 281(2003).

    [59] Heeres R W, Kouwenhoven L P, Zwiller V. Quantum interference in plasmonic circuits[J]. Nature Nanotechnology, 8, 719-722(2013).

    [60] Fakonas J S, Lee H, Kelaita Y A et al. Two-plasmon quantum interference[J]. Nature Photonics, 8, 317-320(2014).

    [61] Altewischer E, van Exter M P, Woerdman J P. Plasmon-assisted transmission of entangled photons[J]. Nature, 418, 304-306(2002).

    [62] Moreno E. García-Vidal F J, Erni D, et al. Theory of plasmon-assisted transmission of entangled photons[J]. Physical Review Letters, 92, 236801(2004).

    [63] Fasel S, Robin F, Moreno E et al. Energy-time entanglement preservation in plasmon-assisted light transmission[J]. Physical Review Letters, 94, 110501(2005).

    [64] Huck A, Smolka S, Lodahl P et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide[J]. Physical Review Letters, 102, 246802(2009).

    [65] Tan S F, Wu L, Yang J K et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 343, 1496-1499(2014).

    [66] Kolesov R, Grotz B, Balasubramanian G et al. Wave-particle duality of single surface plasmon polaritons[J]. Nature Physics, 5, 470-474(2009).

    [67] Dheur M C, Devaux E, Ebbesen T W et al. Single-plasmon interferences[J]. Science Advances, 2, e1501574(2016).

    [68] Li J J, Zheng X B, Feng Y. Recent progress of single-photon sources and single-photon detectors[J]. Chinese Journal of Quantum Electronics, 23, 766-771(2006).

    [69] Jun Y C. Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nature Communications, 2, 283(2011).

    [70] Liu J, Su R, Wei Y et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 14, 586-593(2019).

    [71] Bao Y J, Lin Q L, Su R B et al. 6(31): eaba8761(2020).

    [72] Kan Y. Andersen S K H, Ding F, et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 32, e1907832(2020).

    [73] Huang T Y, Grote R R, Mann S A et al. A monolithic immersion metalens for imaging solid-state quantum emitters[J]. Nature Communications, 10, 2392(2019).

    [74] Tran T T, Wang D Q, Xu Z Q et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 17, 2634-2639(2017).

    [75] Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).

    [76] Reck M, Zeilinger A, Bernstein H J et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 73, 58-61(1994).

    [77] Krenn M, Hochrainer A, Lahiri M et al. Entanglement by path identity[J]. Physical Review Letters, 118, 080401(2017).

    [78] Wang J W, Paesani S, Ding Y H et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).

    [79] Siomau M, Kamli A A, Moiseev S A et al. Entanglement creation with negative index metamaterials[J]. Physical Review A, 85, 050303(2012).

    [80] Ming Y, Zhang W, Tang J et al. Photonic entanglement based on nonlinear metamaterials[J]. Laser & Photonics Reviews, 14, 1900146(2020).

    [81] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [82] Wang K, Titchener J G, Kruk S S et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 361, 1104-1108(2018).

    [83] Asano M, Bechu M, Tame M et al. Distillation of photon entanglement using a plasmonic metamaterial[J]. Scientific Reports, 5, 18313(2015).

    [84] Uriri S A, Tashima T, Zhang X et al. Active control of a plasmonic metamaterial for quantum state engineering[J]. Physical Review A, 97, 053810(2018).

    [85] Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1104(2018).

    [86] Kang M, Lau K M, Yung T K et al. Tailor-made unitary operations using dielectric metasurfaces[J]. Optics Express, 29, 5677-5686(2021).

    [87] Li Q W, Bao W, Nie Z Y et al. A non-unitary metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic[J]. Nature Photonics, 15, 267-271(2021).

    [88] Roger T, Vezzoli S, Bolduc E et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime[J]. Nature Communications, 6, 7031(2015).

    [89] Altuzarra C, Vezzoli S, Valente J et al. Coherent perfect absorption in metamaterials with entangled photons[J]. ACS Photonics, 4, 2124-2128(2017).

    [90] Lyons A, Oren D, Roger T et al. Coherent metamaterial absorption of two-photon states with 40% efficiency[J]. Physical Review A, 99, 011801(2019).

    [91] Altuzarra C, Lyons A, Yuan G H et al. Imaging of polarization-sensitive metasurfaces with quantum entanglement[J]. Physical Review A, 99, 020101(2019).

    [92] Lemos G B, Borish V, Cole G D et al. Quantum imaging with undetected photons[J]. Nature, 512, 409-412(2014).

    [93] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [94] Tsang M. Quantum imaging beyond the diffraction limit by optical centroid measurements[J]. Physical Review Letters, 102, 253601(2009).

    [95] Zhou J X, Liu S K, Qian H L et al. 6(51): eabc4385(2020).

    [96] Georgi P, Massaro M, Luo K H et al. Metasurface interferometry toward quantum sensors[J]. Light: Science & Applications, 8, 70(2019).

    [97] Chen S Z, Zhou X X, Mi C Q et al. Dielectric metasurfaces for quantum weak measurements[J]. Applied Physics Letters, 110, 161115(2017).

    [98] Lundeen J S, Sutherland B, Patel A et al. Direct measurement of the quantum wavefunction[J]. Nature, 474, 188-191(2011).

    [99] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [100] Jha P K, Shitrit N, Ren X X et al. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface[J]. Physical Review Letters, 121, 116102(2018).

    [101] Jha P K, Shitrit N, Kim J et al. Metasurface-mediated quantum entanglement[J]. ACS Photonics, 5, 971-976(2018).

    [102] Jha P K, Ni X J, Wu C et al. Metasurface-enabled remote quantum interference[J]. Physical Review Letters, 115, 025501(2015).

    [103] Lassalle E, Lalanne P, Aljunid S et al. Long-lifetime coherence in a quantum emitter induced by a metasurface[J]. Physical Review A, 101, 013837(2020).

    [104] Kornovan D, Petrov M, Iorsh I. Noninverse dynamics of a quantum emitter coupled to a fully anisotropic environment[J]. Physical Review A, 100, 033840(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoshu Zhu, Jun Liu, Juanzi He, Shuming Wang, Zhenlin Wang, Shining Zhu. Research and Application of Metasurfaces in Quantum Optics[J]. Acta Optica Sinica, 2022, 42(3): 0327006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Oct. 25, 2021

    Accepted: Dec. 23, 2021

    Published Online: Jan. 24, 2022

    The Author Email: Wang Shuming (wangshuming@nju.edu.cn)

    DOI:10.3788/AOS202242.0327006

    Topics