Acta Optica Sinica, Volume. 43, Issue 6, 0601003(2023)

Information Content Analysis on Passive Remote Sensing Imaging Retrieval of Aerosol Layer Height Based on Spaceborne Polarization Crossfire

Haoran Gu1,2, Zhengqiang Li2,3、*, Weizhen Hou2,3、**, Zhenhai Liu4, Lili Qie2, Yinna Li2,3, Yang Zheng2, Zheng Shi2,3, Hua Xu2,3, Jin Hong4, Jinji Ma1, and Zhenting Chen5
Author Affiliations
  • 1School of Geography and Tourism, Anhui Normal University, Wuhu 241000, Anhui, China
  • 2State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 5School of Information Engineering, Kunming University, Kunming 650214, Yunnan, China
  • show less
    Figures & Tables(20)
    Flowchart of information content analysis
    PSOP observation geometry used in research. (a) Observation geometry; (b) scattering angle distribution
    Aerosol volume size distribution
    Scattering phase function and polarized scattering phase function varying with scattering angle. (a)(b) Scattering phase function; (c)(d) polarized scattering phase function
    Surface simulation results varying with observation geometry angle. (a) BRDF; (b) BPDF
    Simulation result varying with observation geometry angle. (a) Apparent reflectivity ; (b) apparent polarized reflectivity
    Jacobian result varying with observation geometry angle. (a) ∂I∂V0f; (b) ∂I∂H; (c) ∂DOLP∂V0f; (d) ∂DOLP∂H
    Jacobian result of vegetation surface intensity observation varying with H under different observation geometries. (a) Fine-dominated AOD of 0.8; (b) coarse-dominated AOD of 0.8; (c) fine-dominated AOD of 0.2; (d) coarse-dominated AOD of 0.2
    Jacobi simulation results under different aerosol and vegetation surface conditions. (a) (c) Different aerosol conditions; (b)(d) different surface conditions
    Analysis of information content results under different surface conditions. (a) Vegetation; (b) bare soil
    ALH information under different scenarios. (a) Fine-dominated; (b) coarse-dominated
    Posterior error varying with aerosol model parameters at 380 nm band. (a)(b) Posterior error; (c)(d) reduction value of posterior error
    Effect of adding 380 nm wave band polarization measurement on posterior error. (a)(b) Adding 380 nm wave band pure intensity measurement; (c)(d) adding 380 nm wave band intensity and polarization measurements; (e)(f) difference of posterior error reduction between two observation schemes
    Effect of adding 410 nm measurement on posterior error. (a)(b) Adding 410 nm band intensity measurement; (c)(d) adding 410 nm band intensity and polarization measurements
    • Table 1. Basic parameters of sensors

      View table

      Table 1. Basic parameters of sensors

      Equipment parameterDPCPOSP
      Central wavelength443 nm,490 nm,565 nm,670 nm,763 nm,765 nm,865 nm,910 nm380 nm,410 nm,443 nm,490 nm,670 nm,865 nm,1380 nm,1610 nm,2250 nm
      Elements of Stokes vectorIQUIQU
      Instrument FOV(±50°)×(±50°)-50°-50°
      Polarization calculation error0.0200.005
      Radiance calculation error5%5%(VNIR),6%(SWIR)
      Number of viewing angles151
    • Table 2. Aerosol model parameters

      View table

      Table 2. Aerosol model parameters

      Scenariomr(550 nm)mi(550 nm)reff /μmveffFMFV
      Fine-dominated0.5490.0030.210.50360.8
      Coarse-dominated1.4340.0111.900.19150.2
    • Table 3. Surface model parameters

      View table

      Table 3. Surface model parameters

      Surface typefisoλk1k2CINDV
      Vegetation0.0186(380 nm),0.0190(410 nm)0.1580.5476.570.62
      Bare soil0.0293(380 nm),0.0313(410 nm)0.0870.6686.900.03
    • Table 4. POSP observable correlation in 380 nm and 410 nm

      View table

      Table 4. POSP observable correlation in 380 nm and 410 nm

      Observabley1y2y3y4
      y1(radiance at 380 nm)1.000.990.270.23
      y2(radiance at 410 nm)0.99(c11.000.230.18
      y3(polarization at 380 nm)0.27(c20.23(c41.000.99
      y4(polarization at 410 nm)0.23(c30.18(c50.99(c61.00
    • Table 5. Numerical simulation schemes

      View table

      Table 5. Numerical simulation schemes

      Scheme380-nm radiance380-nm polarization410-nm radiance410-nm polarization
      A-I×××
      A-IP××
      V-I×××
      V-IP××
      AV-I××
      AV-IP
    • Table 6. DFS of H at A-I and AV-IP schemes

      View table

      Table 6. DFS of H at A-I and AV-IP schemes

      Surface typeAerosol scenarioA-IAV-IP
      Bare soilFine-dominated0.600.81
      Coarse-dominated0.450.79
      VegetationFine-dominated0.710.83
      Coarse-dominated0.600.80
    Tools

    Get Citation

    Copy Citation Text

    Haoran Gu, Zhengqiang Li, Weizhen Hou, Zhenhai Liu, Lili Qie, Yinna Li, Yang Zheng, Zheng Shi, Hua Xu, Jin Hong, Jinji Ma, Zhenting Chen. Information Content Analysis on Passive Remote Sensing Imaging Retrieval of Aerosol Layer Height Based on Spaceborne Polarization Crossfire[J]. Acta Optica Sinica, 2023, 43(6): 0601003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Apr. 26, 2022

    Accepted: Aug. 1, 2022

    Published Online: Mar. 13, 2023

    The Author Email: Li Zhengqiang (lizq@radi.ac.cn), Hou Weizhen (houwz@radi.ac.cn)

    DOI:10.3788/AOS221036

    Topics