Optics and Precision Engineering, Volume. 30, Issue 12, 1478(2022)
Vehicle detection based on FVOIRGAN-Detection
[1] A BEHL, O H JAFARI, S K MUSTIKOVELA et al. Bounding boxes, segmentations and object coordinates: how important is recognition for 3D scene flow estimation in autonomous driving scenarios?, 2593-2602(2017).
[2] Y P CHEN, J K WANG, J LI et al. LiDAR-video driving dataset: learning driving policies effectively, 5870-5878(2018).
[3] A GEIGER, P LENZ, R URTASUN. Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3354-3361(2012).
[4] S K KWON, E HYUN, J H LEE et al. Detection scheme for a partially occluded pedestrian based on occluded depth in lidar-radar sensor fusion. Optical Engineering, 56, 113112(2017).
[5] S ZHANG, X ZHAO, W B LEI et al. Front vehicle detection based on multi-sensor fusion for autonomous vehicle. Journal of Intelligent & Fuzzy Systems, 38, 365-377(2020).
[6] [6] 6王中宇, 倪显扬, 尚振东. 利用卷积神经网络的自动驾驶场景语义分割[J]. 光学 精密工程, 2019, 27(11): 2429-2438. doi: 10.3788/ope.20192711.2429WANGZ Y, NIX Y, SHANGZ D. Autonomous driving semantic segmentation with convolution neural networks[J]. Opt. Precision Eng., 2019, 27(11): 2429-2438.(in Chinese). doi: 10.3788/ope.20192711.2429
[7] [7] 7杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199. doi: 10.3788/OPE.20202805.1187YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese). doi: 10.3788/OPE.20202805.1187
[8] L CALTAGIRONE, M BELLONE, L SVENSSON et al. LIDAR-camera fusion for road detection using fully convolutional neural networks. Robotics and Autonomous Systems, 111, 125-131(2019).
[9] A ASVADI, L GARROTE, C PREMEBIDA et al. Multimodal vehicle detection: fusing 3D-LIDAR and color camera data. Pattern Recognition Letters, 115, 20-29(2018).
[10] X Z CHEN, H M MA, J WAN et al. Multi-view 3D object detection network for autonomous driving, 6526-6534(2017).
[11] M LIANG, B YANG, Y CHEN et al. Multi-task multi-sensor fusion for 3D object detection, 7337-7345(2019).
[12] L J FANG, X ZHAO, S Q ZHANG. Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications, 78, 13227-13245(2019).
[13] J KU, M MOZIFIAN, J LEE et al. Joint 3D proposal generation and object detection from view aggregation, 1-8(2018).
[14] M LIANG, B YANG, S WANG et al. Deep continuous fusion for multi-sensor 3d object detection, 641-656(2018).
[15] [15] 15陈俊英, 白童垚, 赵亮. 互注意力融合图像和点云数据的3D目标检测[J]. 光学 精密工程, 2021, 29(9): 2247-2254. doi: 10.37188/OPE.20212909.2247CHENJ Y, BAIT Y, ZHAOL. 3D object detection based on fusion of point cloud and image by mutual attention[J]. Opt. Precision Eng., 2021, 29(9): 2247-2254.(in Chinese). doi: 10.37188/OPE.20212909.2247
[16] J SCHLOSSER, C K CHOW, Z KIRA. Fusing LIDAR and images for pedestrian detection using convolutional neural networks, 2198-2205(2016).
[17] S GUPTA, R GIRSHICK, P ARBELÁEZ et al. Learning rich features from RGB-D images for object detection and segmentation, 345-360(2014).
[18] A JOLICOEUR-MARTINEAU. The relativistic discriminator: a key element missing from standard GAN. arXiv preprint arXiv.
[19] R GEIRHOSET, P RUBISCH et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv.
[20] A RADFORD, L METZ, S CHINTALA. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint.
[21] J Y MA, W YU, P W LIANG et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11-26(2019).
[22] T FAWCETT. An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874(2006).
[23] A GEIGER, P LENZ, C STILLER et al. Vision meets robotics: the KITTI dataset. The International Journal of Robotics Research, 32, 1231-1237(2013).
[24] X Z CHEN, K KUNDU, Z Y ZHANG et al. Monocular 3D object detection for autonomous driving, 2147-2156(2016).
[25] X CHEN, K KUNDU, Y ZHU et al. 3d object proposals for accurate object class detection. Advances in Neural Information Processing Systems, 424-432(2015).
[26] G BRAZIL, X M LIU. M3D-RPN: monocular 3D region proposal network for object detection, 9286-9295(2019).
Get Citation
Copy Citation Text
Hao ZHANG, Jianhua YANG, Haiyang HUA. Vehicle detection based on FVOIRGAN-Detection[J]. Optics and Precision Engineering, 2022, 30(12): 1478
Category: Information Sciences
Received: Dec. 14, 2021
Accepted: --
Published Online: Jul. 5, 2022
The Author Email: HUA Haiyang (c3i11@sia.cn)