Journal of the Chinese Ceramic Society, Volume. 51, Issue 11, 2992(2023)

Properties and Applications of Low pH Value Cement-Based Material

LIU Jiangfeng1... ZHANG Xiangyu2, CHEN Liang3, WANG Jv3, LIU Jian3 and REN Zengzeng4 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(88)

    [1] [1] ZHANG W. Research progress of advanced cementitious composites[J]. IOP Conf Ser: Earth Environ Sci, 2021, 651(3): 032044.

    [3] [3] LIU C J, HUANG X C, WU Y Y, et al. Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide[J]. Nanotechnol Rev, 2020, 9(1): 155-169.

    [4] [4] IYENGAR S R, AL-TABBAA A. Developmental study of a low-pH magnesium phosphate cement for environmental applications[J]. Environ Technol, 2007, 28(12): 1387-1401.

    [5] [5] CAU DIT COUMES C, COURTOIS S, NECTOUX D, et al. Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories[J]. Cem Concr Res, 2006, 36(12): 2152-2163.

    [7] [7] MARSISKE M R, DEBUS C, DI LORENZO F, et al. Immobilization of (aqueous) cations in low pH M-S-H cement[J]. Appl Sci, 2021, 11(7): 2968.

    [8] [8] SHI C J, SPENCE R. Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes[J]. Crit Rev Environ Sci Technol, 2004, 34(4): 391-417.

    [9] [9] Boden, Anders, Sievaenen, Ursula. Low-pH injection grout for deep repositories. Summary report from a co-operation project between NUMO (Japan), Posiva (Finland) and SKB (Sweden)[Z]. Sweden, 2005.

    [10] [10] MATTUS C, DOLE L. Low pH Concrete for Use in a US High-Level Waste Repository: Part II-Formulation and Tests[J]. 2022.

    [11] [11] ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Magnesium- silicate-hydrate cements for encapsulating problematic aluminium containing wastes[J]. J Sustain Cem Based Mater, 2012, 1(1-2): 34-45.

    [12] [12] ZHANG T T, CHEESEMAN C R, VANDEPERRE L J. Development of low pH cement systems forming magnesium silicate hydrate (M-S-H)[J]. Cem Concr Res, 2011, 41(4): 439-442.

    [13] [13] QUINA M J, BORDADO J C M, QUINTA-FERREIRA R M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues[J]. Waste Manag, 2009, 29(9): 2483-2493.

    [14] [14] ANH H N, AHN H, JO H Y, et al. Effect of alkaline solutions on bentonite properties[J]. Environ Earth Sci, 2017, 76(10): 374.

    [15] [15] HEIKOLA T, KUMPULAINEN S, VUORINEN U, et al. Influence of alkaline (pH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites[J]. Clay Miner, 2013, 48: 309-329.

    [20] [20] SAGS A A, MORENO E I, ANDRADE C. Evolution of pH during in situ leaching in small concrete cavities[J]. Cem Concr Res, 1997, 27(11): 1747-1759.

    [21] [21] MANSO S, AGUADO A. A review of sample preparation and its influence on pH determination in concrete samples[J]. Mater Constr, 2017, 67(325): 108.

    [22] [22] PLUSQUELLEC G, GEIKER M R, LINDGRD J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison[J]. Cem Concr Res, 2017, 96: 13-26.

    [24] [24] CODINA M, CAU-DIT-COUMES C, LE BESCOP P, et al. Design and characterization of low-heat and low-alkalinity cements[J]. Cem Concr Res, 2008, 38(4): 437-448.

    [25] [25] ZHANG Tingting. Development of novel low pH Magnesium Silicate Hydrate (M-S-H) cement systems for encapsulation of problematic nuclear wastes[D]. London: Imperial College London, 2012.

    [26] [26] BROUWERS H J H, VANEIJK R J. Alkali concentrations of pore solution in hydrating OPC[J]. Cem Concr Res, 2003, 33(2): 191-196.

    [27] [27] HONG S Y, GLASSER F P. Alkali binding in cement pastes[J]. Cem Concr Res, 1999, 29(12): 1893-1903.

    [28] [28] VOLLPRACHT A, LOTHENBACH B, SNELLINGS R, et al. The pore solution of blended cements: A review[J]. Mater Struct, 2016, 49(8): 3341-3367.

    [29] [29] GARCA CALVO J L, HIDALGO A, ALONSO C, et al. Development of low-pH cementitious materials for HLRW repositories[J]. Cem Concr Res, 2010, 40(8): 1290-1297.

    [31] [31] LAGERBLAD B. High Performing Concrete with Low pH as Bore Hole Plugging Material[Z]. Asp, Sweden: 27.

    [32] [32] LAM L, WONG Y L, POON C S. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete[J]. Cem Concr Res, 1998, 28(2): 271-283.

    [33] [33] MEHTA P K, GJRV O E. Properties of Portland cement concrete containing fly ash and condensed silica-fume[J]. Cem Concr Res, 1982, 12(5): 587-595.

    [34] [34] SHEHATA M H, THOMAS M D A, BLESZYNSKI R F. The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes[J]. Cem Concr Res, 1999, 29(12): 1915-1920.

    [35] [35] THOMAS M D A, SHEHATA M H, SHASHIPRAKASH S G, et al. Use of ternary cementitious systems containing silica fume and fly ash in concrete[J]. Cem Concr Res, 1999, 29(8): 1207-1214.

    [37] [37] Vogt, Carsten, Lagerblad, Bjoern, Wallin, Kjell, et al. Low pH self compacting concrete for deposition tunnel plugs[Z]. Sweden, 2009.

    [38] [38] WANG W, XUE J, HUANG W. Study of engineering properties of low-pH self-compacting concrete for concrete plug[J]. Case Studies in Construction Materials, 2022, 16: e1060.

    [39] [39] BACH T T H, COUMES C C D, POCHARD I, et al. Influence of temperature on the hydration products of low pH cements[J]. Cem Concr Res, 2012, 42(6): 805-817.

    [40] [40] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cem Concr Res, 2004, 34(9): 1499-1519.

    [41] [41] HARRIS A W, MANNING M C, TEARLE W M, et al. Testing of models of the dissolution of cements-leaching of synthetic CSH gels[J]. Cem Concr Res, 2002, 32(5): 731-746.

    [42] [42] LOTHENBACH B, RENTSCH D, WIELAND E. Hydration of a silica fume blended low-alkali shotcrete cement[J]. Phys Chem Earth Parts A/B/C, 2014, 70-71: 3-16.

    [43] [43] ATKINSON A, EVERITT N M, GUPPY R. Evolution of pH in a radwaste repository: experimental simulation of cement leaching[Z]. United Kingdom, 1987.

    [44] [44] STRONACH S A, WALKER N L, MACPHEE D E, et al. Reactions between cement and As(III) oxide: the system CaO-SiO2-As2O3-H2O at 25 ℃[J]. Waste Manag, 1997, 17(1): 9-13.

    [46] [46] MIHARA M, IRIYA K, NEYAMA A, et al. Experimental and modelling studies on the interaction between cement paste with silica fume and distrilled water[J]. Hoshasei Haikibutsu Kenkyu, 1997, 3(2): 71-79.

    [47] [47] Cau Dit Coumes C. Low pH cements for waste repositories: a review[C]. 2008.

    [48] [48] M. N. Gray B S S. For better concrete, take out some of the cement, Proc.[C]. Bangkok, Thailand: 1998.

    [52] [52] JIN F, AL-TABBAA A. Strength and hydration products of reactive MgO-silica pastes[J]. Cem Concr Compos, 2014, 52: 27-33.

    [53] [53] LI Z H, ZHANG T S, HU J, et al. Characterization of reaction products and reaction process of MgO-SiO2-H2O system at room temperature[J]. Constr Build Mater, 2014, 61: 252-259.

    [55] [55] BREW D M R, GLASSER F P. The magnesia-silica gel phase in slag cements: alkali (K, Cs) sorption potential of synthetic gels[J]. Cem Concr Res, 2005, 35(1): 77-83.

    [56] [56] BERNARD E, LOTHENBACH B, RENTSCH D, et al. Formation of magnesium silicate hydrates (M-S-H)[J]. Phys Chem Earth Parts A/B/C, 2017, 99: 142-157.

    [67] [67] YANG N, SHI C, YANG J, et al. Research Progresses in Magnesium Phosphate Cement-Based Materials[J]. Journal of Materials in Civil Engineering. 2014, 26: 4014071.

    [68] [68] EL-JAZAIRI B. The properties of hardened mpc mortar and concrete relevant to the requirements of rapid repair of concrete pavements[J]. CONCRETE, 1987, 21(9): 25-31.

    [69] [69] POPOVICS S, RAJENDRAN N, PENKO M. Rapid hardening cements for repair of concrete[J]. Mater J, 1987, 84(1): 64-73 .

    [70] [70] XU B W, LOTHENBACH B, LEEMANN A, et al. Reaction mechanism of magnesium potassium phosphate cement with high magnesium- to-phosphate ratio[J]. Cem Concr Res, 2018, 108: 140-151.

    [71] [71] WAGH A S. Recent progress in chemically bonded phosphate ceramics[J]. ISRN Ceram, 2013, 2013: 1-20.

    [72] [72] WAGH A. Chemically bonded phosphate ceramics: Twenty-first century materials with diverse applications[M]. Elsevier, 2004.

    [73] [73] KOGBARA R B, AL-TABBAA A, IYENGAR S R. Utilisation of magnesium phosphate cements to facilitate biodegradation within a stabilised/solidified contaminated soil[J]. Water Air Soil Pollut, 2011, 216(1): 411-427.

    [74] [74] WAGH A S. Phosphate chemistry[M]//Chemically Bonded Phosphate Ceramics. Amsterdam: Elsevier, 2004: 43-50.

    [75] [75] HALL D A, STEVENS R, EL JAZAIRI B. Effect of water content on the structure and mechanical properties of magnesia-phosphate cement mortar[J]. J Am Ceram Soc, 2005, 81(6): 1550-1556.

    [76] [76] JEAN P, JEAN A. Fiber-reinforced magnesia-phosphate cement composites for rapid repair[J]. Cem Concr Compos, 1998, 20(1): 31-39.

    [77] [77] CHAU C K, QIAO F, LI Z J. Potentiometric study of the formation of magnesium potassium phosphate hexahydrate[J]. J Mater Civ Eng, 2012, 24(5): 586-591.

    [78] [78] LE ROUZIC M, CHAUSSADENT T, PLATRET G, et al. Mechanisms of k-struvite formation in magnesium phosphate cements[J]. Cem Concr Res, 2017, 91: 117-122.

    [79] [79] DENG Q B, LAI Z Y, YAN T, et al. Effect of Cr(III) on hydration, microstructure of magnesium phosphate cement, and leaching toxicity evaluation[J]. Environ Sci Pollut Res, 2021, 28(12): 15290-15304.

    [80] [80] WU J, LAI Z Y, HE X, et al. Porous materials prepared by magnesium phosphate cement for the effective immobilization of lead ions[J]. Int J Environ Res, 2021, 15(4): 681-694.

    [81] [81] DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization[J]. J Environ Manag, 2014, 146: 179-188.

    [82] [82] TRAN H M, SCOTT A. Strength and workability of magnesium silicate hydrate binder systems[J]. Constr Build Mater, 2017, 131: 526-535.

    [85] [85] WANG Q, CUI X Y, WANG J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste[J]. Constr Build Mater, 2017, 138: 35-44.

    [86] [86] ELMRABET R, EL HARFI A, EL YOUBI M S. Study of properties of fly ash cements[J]. Mater Today Proc, 2019, 13: 850-856.

    [87] [87] NAYAK D K, ABHILASH P P, SINGH R, et al. Fly ash for sustainable construction: a review of fly ash concrete and its beneficial use case studies[J]. Clean Mater, 2022, 6: 100143.

    [89] [89] MA J T, WANG D G, ZHAO S B, et al. Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste[J]. Materials, 2021, 14(2): 283.

    [90] [90] PERIS MORA E, PAY J, MONZ J. Influence of different sized fractions of a fly ash on workability of mortars[J]. Cem Concr Res, 1993, 23(4): 917-924.

    [98] [98] YANG J M, WANG L M, JIN C, et al. Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution[J]. Constr Build Mater, 2020, 237: 117639.

    [99] [99] YANG J M, ZHANG J, ZHENG S C. Experimental research on seawater erosion resistance of magnesium potassium phosphate cement pastes[J]. Constr Build Mater, 2018, 183: 534-543.

    [101] [101] JOLICOEUR C, SIMARD M A. Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts[J]. Cem Concr Compos, 1998, 20(2-3): 87-101.

    [103] [103] ABOU-MESALAM M M, EL-NAGGAR I M. Selectivity modification by ion memory of magneso-silicate and magnesium alumino-silicate as inorganic sorbents[J]. J Hazard Mater, 2008, 154(1-3): 168-174.

    [104] [104] WAGH A S, STRAIN R, JEONG S Y, et al. Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics[J]. J Nucl Mater, 1999, 265(3): 295-307.

    [105] [105] WAGH A. Demonstration of packaging of Fernald Silo I waste in chemically bonded phosphate ceramic[C]. WM’99 CONFERENCE, FEBRUARY 28-MARCH 4, 1999.

    [106] [106] WAGH A, ANTINK A, MALONEY M, et al. Investigations in ceramicrete stabilization of Hanford tank wastes[C]. Waste Management 2003 Symposium, 2003.

    [108] [108] KIM J S, KWON S, CHOI J W, et al. Properties of low-pH cement grout as a sealing material for the geological disposal of radioactive waste[J]. Nucl Eng Technol, 2011, 43(5): 459-468.

    [112] [112] LE ROUZIC M, CHAUSSADENT T, STEFAN L, et al. On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes[J]. Cem Concr Res, 2017, 96: 27-41.

    [113] [113] QIN J H, QIAN J S, DAI X B, et al. Effect of water content on microstructure and properties of magnesium potassium phosphate cement pastes with different magnesia-to-phosphate ratios[J]. J Am Ceram Soc, 2021, 104(6): 2799-2819.

    [114] [114] SHAND M A, AL-TABBAA A, QIAN J S, et al. Magnesia cements: From formulation to application[M]. Saint Louis: Elsevier, 2020.

    [115] [115] GAO M, CHEN B, LANG L, et al. Influence of silica fume on mechanical properties and water resistance of magnesium-ammonium phosphate cement[J]. J Mater Civ Eng, 2020, 32(3): 4019368.

    [116] [116] GLASSER F P. Fundamental aspects of cement solidification and stabilisation[J]. J Hazard Mater, 1997, 52(2-3): 151-170.

    [117] [117] LI J F, CHEN L, WANG J L. Solidification of radioactive wastes by cement-based materials[J]. Prog Nucl Energy, 2021, 141: 103957.

    [118] [118] JANTZEN C M. Radioactive waste-Portland cement systems: II, leaching characteristics[J]. J Am Ceram Soc, 1984, 67(10): 674-676.

    [119] [119] ZHANG T T, ZOU J, LI Y M, et al. Stabilization/solidification of strontium using magnesium silicate hydrate cement[J]. Processes, 2020, 8(2): 163.

    [121] [121] SHI C J, FERNNDEZ-JIMNEZ A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements[J]. J Hazard Mater, 2006, 137(3): 1656-1663.

    [122] [122] SHARP J H, HILL J, MILESTONE N B, et al. Cementitious systems for encapsualation of intermediate level waste[C]//9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3. Oxford, England. ASMEDC, 2003.

    [123] [123] VINOKUROV S E, KULYAKO Y M, SLYUNTCHEV O M, et al. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices[J]. J Nucl Mater, 2009, 385(1): 189-192.

    [124] [124] COVILL A, HYATT N C, HILL J, et al. Development of magnesium phosphate cements for encapsulation of radioactive waste[J]. Adv Appl Ceram, 2011, 110(3): 151-156.

    [125] [125] IYENGAR S, AL-TABBAA A. Application of two novel magnesia-based cements in the stabilization/solidification of contaminated soils[C]//GeoCongress 2008. New Orleans, Louisiana, USA. Reston, VA: American Society of Civil Engineers, 2008: 716-723.

    [127] [127] SAVAGE D, WALKER C, ARTHUR R, et al. Alteration of bentonite by hyperalkaline fluids: A review of the role of secondary minerals[J]. Phys Chem Earth Parts A/B/C, 2007, 32(1-7): 287-297.

    [128] [128] DOLE L, MATTUS C. Low pH concrete and grout for use in the US high-level waste repository: Part I[C]. Paris: R&D on Low-pH Cement for a Geological Repository, 3rd Workshop, 2008.

    [129] [129] HOLT E, LEIVO M, VEHMAS T. Low-pH Concrete Developed for Tunnel End Plugs Used in Nuclear Waste Containment[C]. Oslo: Concrete Innovation Conference, 2014.

    Tools

    Get Citation

    Copy Citation Text

    LIU Jiangfeng, ZHANG Xiangyu, CHEN Liang, WANG Jv, LIU Jian, REN Zengzeng. Properties and Applications of Low pH Value Cement-Based Material[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2992

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 18, 2023

    Accepted: --

    Published Online: Jan. 18, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics