Optics and Precision Engineering, Volume. 26, Issue 7, 1766(2018)

Compressive imaging based on Tetrolet-domain uHMT structured sparse prior and Turbo equalization

YANG Xing
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] ROMBERG J. Imaging via compressive sampling[J].IEEE Signal Process. Mag., 2008, 25(2): 14-20.

    [2] [2] SUN H, ZHANG ZH L, YU L. From sparsity to structured sparsity: Bayesian perspective[J]. Signal processing, 2012, 28(6): 759-773. (in Chinese)

    [3] [3] WU J N, XU H D, WANG J. A new joint reconstruction algorithm of compressed sensing for multichannel EEG signals based on over-complete dictionary approach[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1666-1673. (in Chinese)

    [4] [4] CROUSE M S, NOWAK R D, BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.

    [5] [5] BARANIUK R G, CEVHER V, DUARTE M F, et al.. Model-based compressive sensing[J]. IEEE Trans. Inf. Theory, 2010, 56(4): 1982-2001.

    [6] [6] DUARTE M F, WAKIN M B, BARANIUK R G. Wavelet-domain compressive signal reconstruction using a hidden Markov tree model[C]. IEEE Int. Conf. Acoust. Speech & Signal Process, 2008: 5137-5140.

    [7] [7] HE L, CARIN L. Exploiting structure in wavelet-based Bayesian compressive sensing[J]. IEEE Trans. Signal Processing, 2009, 57(9): 3488-3497.

    [8] [8] TORKAMANI R, SADEGHZADEH R A. Bayesian compressive sensing using wavelet based Markov random fields[J]. Signal Processing-Image and Communication, 2017, 58: 65-72.

    [9] [9] HE L, CHEN H, CARIN L. Tree-structured compressive sensing with variational Bayesian analysis[J]. IEEE Signal Processing letter, 2010, 17(3): 233-236.

    [10] [10] BARON D, SARVOTHAM S, BARANIUK R G. Bayesian compressive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 269-280.

    [11] [11] SOM S, SCHNITER P. Compressive imaging using approximate message passing and a Markov-tree prior[J]IEEE Transactions on Signal Processing, 2012, 60(7): 3439-3448.

    [12] [12] KROMMWEH J. Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation[J].Journal of Visual Communication and Image Representation, 2010, 21(4): 364-374.

    [13] [13] HEGDE C, INDYK P, SCHMIDT L. A fast approximation algorithm for tree-sparse recovery[C].IEEE Int. Symp. Inf. Theory, 2014, 1842-1846.

    [14] [14] WANG Y G, YANG L, TANG Z Y, et al.. Multitask classification and reconstruction using extended Turbo approximate message passing[J]. Signal Image and Video Processing, 2017, 11(2): 219-226

    [15] [15] TAN J, MA Y T, BARON D. Compressive imaging via approximate message passing with image denoising[J].IEEE Transactions on Signal Processing, 2015, 63(8): 2085-2092.

    [16] [16] METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing[J].IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144.

    [17] [17] ROMBERG J K, CHOI H, BARANIUK R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J].IEEE Transaction on Image Processing, 2001, 10(7): 1056-1068.

    [18] [18] MCELIECE R J, MACKAY D J, CHENG J F. Turbo decoding as an instance of Pearls ‘belief propagation’ algorithm[J].IEEE J. Sel. Areas Commun., 1998, 16(2): 140-152.

    [19] [19] MACKAY D J. Information Theory, Inference, and Learning Algorithms[M].New York: Cambridge University Press, 2003, 570-574.

    [20] [20] KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm[J].IEEE Trans. Inf. Theory, 2001, 47: 498-519.

    [21] [21] BAYATI M, MONTANARI A. The dynamics of message passing on dense graphs with applications to compressed sensing[J].IEEE Trans. Inf. Theory, 2011, 57(2): 764-785.

    [22] [22] DONOHO D L, MALEKI A, MONTANARI A. Message passing algorithms for compressed sensing: I. Motivation and construction[C].Inf. Theory Workshop, 2010, 1-5.

    Tools

    Get Citation

    Copy Citation Text

    YANG Xing. Compressive imaging based on Tetrolet-domain uHMT structured sparse prior and Turbo equalization[J]. Optics and Precision Engineering, 2018, 26(7): 1766

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 29, 2017

    Accepted: --

    Published Online: Oct. 2, 2018

    The Author Email:

    DOI:10.3788/ope.20182607.1766

    Topics