Photonics Research, Volume. 10, Issue 5, 1271(2022)

High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings

Zhuohui Yang1, Zhengqing Ding1, Lin Liu1, Hancheng Zhong1, Sheng Cao1, Xinzhong Zhang1, Shizhe Lin1, Xiaoying Huang1, Huadi Deng1, Ying Yu1、*, and Siyuan Yu1,2
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2e-mail: yusy@mail.sysu.edu.cn
  • show less
    References(56)

    [1] D. Botez, G. J. Herskowitz. Components for optical communications systems: a review. Proc. IEEE, 68, 689-731(1980).

    [2] O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, G. Erbert. Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design. Semicond. Sci. Technol., 29, 095018(2014).

    [3] E. Di Gaetano, S. Watson, E. McBrearty, M. Sorel, D. J. Paul. Sub-megahertz linewidth 780.24  nm distributed feedback laser for 87Rb applications. Opt. Lett., 45, 3529-3532(2020).

    [4] V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, A. Peters. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl. Phys. B, 122, 217(2016).

    [5] Y. He, H. An, J. Cai, C. Galstad, S. Macomber, M. Kanskar. 808 nm broad area DFB laser for solid-state laser pumping application. Electron. Lett., 45, 163-164(2009).

    [6] S. Stephan, D. Frederic, A. Markus-Christian. Novel InP- and GaSb-based light sources for the near to far infrared. Semicond. Sci. Technol., 31, 113005(2016).

    [7] M. Hoppe, C. Aßmann, S. Schmidtmann, T. Milde, M. Honsberg, T. Schanze, J. Sacher. GaSb-based digital distributed feedback filter laser diodes for gas sensing applications in the mid-infrared region. J. Opt. Soc. Am. B, 38, B1-B8(2021).

    [8] S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, W. Mimnagh. A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer. Proc. SPIE, 9328, 932809(2015).

    [9] T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, M. Ikeda. GaN-based blue laser diodes. J. Phys.: Condens. Matter, 13, 7099(2001).

    [10] J. C. Palais. Fiber Optic Communications(1988).

    [11] T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, C. Roxlo. Challenges and opportunities of directly modulated lasers in future data center and 5G networks. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).

    [12] C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, V. Donzella. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).

    [13] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, H. Rong. High-resolution aliasing-free optical beam steering. Optica, 3, 887-890(2016).

    [14] M.-C. Amann, M. Ortsiefer. Long-wavelength (λ1.3μm) InGaAlAs–InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing. Phys. Status Solidi A, 203, 3538-3544(2006).

    [15] A. Liu, P. Wolf, J. A. Lott, D. Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon. Res., 7, 121-136(2019).

    [16] H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg. p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett., 89, 073113(2006).

    [17] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, Y. Arakawa. Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers. The European Conference on Lasers and Electro-Optics, PDA_1(2011).

    [18] Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, C. Wang. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express, 25, 28817-28824(2017).

    [19] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).

    [20] A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express, 15, 5388-5393(2007).

    [21] D. A. I. Marpaung. High dynamic range analog photonic links(2009).

    [22] B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A, 103, 033509(2021).

    [23] H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, F. Grillot. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon., 5, 016103(2020).

    [24] B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, F. Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photon. Res., 9, 1550-1558(2021).

    [25] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [26] C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, R. V. Penty. Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon. J. Lightwave Technol., 38, 4801-4807(2020).

    [27] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).

    [28] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [29] J. C. Norman, R. P. Mirin, J. E. Bowers. Quantum dot lasers—history and future prospects. J. Vac. Sci. Technol. A, 39, 020802(2021).

    [30] D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, J. E. Bowers. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett., 112, 153507(2018).

    [31] T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, G. Eisenstein. Large linewidth reduction in semiconductor lasers based on atom-like gain material. Optica, 6, 1071-1077(2019).

    [32] Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, D. Poitras. Quantum dot semiconductor lasers for 5G and beyond wireless networks. Proc. SPIE, 11690, 116900N(2021).

    [33] K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa. Wide-temperature-range 10.3  Gbit/s operations of 1.3  μm high-density quantum-dot DFB lasers. Electron. Lett., 47, 206-208(2011).

    [34] Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers. 1.3  μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon. Rev., 14, 2000037(2020).

    [35] C. B. Cooper, S. Salimian, H. F. Macmillan. Reactive ion etch characteristics of thin InGaAs and AlGaAs stop-etch layers. J. Electron. Mater., 18, 619-622(1989).

    [36] G. C. Desalvo, W. F. Tseng, J. Comas. ChemInform abstract: etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP. ChemInform, 23, 309(1992).

    [37] Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, C. Zheng. Development of modulation p-doped 1310  nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes. ACS Photon., 5, 1084-1093(2018).

    [38] S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, A. Ksendzov. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength. Appl. Phys. Lett., 100, 031107(2012).

    [39] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, T. Mukai. CW operation of the first-order AlInGaN 405  nm distributed feedback laser diodes. Jpn. J. Appl. Phys., 45, L1223-L1225(2006).

    [40] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, S. Yu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528-533(2018).

    [41] C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, Z. C. Niu. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2  μm. Appl. Phys. Lett., 114, 021102(2019).

    [42] A. Laakso, J. Karinen, M. Dumitrescu. Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings. Proc. SPIE, 7933, 79332K(2011).

    [43] W. Streifer, D. Scifres, R. Burnham. Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers. IEEE J. Quantum Electron., 11, 867-873(1975).

    [44] W.-Y. Choi, J. C. Chen, C. G. Fonstad. Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers. Jpn. J. Appl. Phys., 35, 4654-4659(1996).

    [45] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res., 7, 1222-1228(2019).

    [46] F. Grillot, B. Thedrez, D. Guang-Hua. Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures. IEEE J. Quantum Electron., 40, 231-240(2004).

    [47] Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, A. Ramdane. Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm. Appl. Phys. Lett., 97, 231115(2010).

    [48] H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photon. Technol. Lett., 15, 1504-1506(2003).

    [49] H. Su, L. F. Lester. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D, 38, 2112-2118(2005).

    [50] S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, A. Ramdane. Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3  μm DFB quantum-dot lasers. IEEE Photon. Technol. Lett., 23, 582-584(2011).

    [51] M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, D. Bimberg. 15  Gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots. Appl. Phys. Lett., 105, 011103(2014).

    [52] M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, Y. Arakawa. Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback. IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [53] S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens. 1.3  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express, 26, 18302-18309(2018).

    [54] Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 210057(2021).

    [55] D. Liang, S. Srinivasan, A. Descos, C. Zhang, G. Kurczveil, Z. Huang, R. Beausoleil. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).

    [56] G. Liu, G. Zhao, J. Sun, D. Gao, Q. Lu, W. Guo. Experimental demonstration of DFB lasers with active distributed reflector. Opt. Express, 26, 29784-29795(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zhuohui Yang, Zhengqing Ding, Lin Liu, Hancheng Zhong, Sheng Cao, Xinzhong Zhang, Shizhe Lin, Xiaoying Huang, Huadi Deng, Ying Yu, Siyuan Yu. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings[J]. Photonics Research, 2022, 10(5): 1271

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jan. 19, 2022

    Accepted: Mar. 23, 2022

    Published Online: Apr. 27, 2022

    The Author Email: Ying Yu (yuying26@mail.sysu.edu.cn)

    DOI:10.1364/PRJ.454200

    Topics