Spectroscopy and Spectral Analysis, Volume. 42, Issue 3, 699(2022)

Research on the Improvement of Spectra Classification Performance With the High-Performance Hybrid Deep Learning Network

Zhong-bao LIU1、* and Jie WANG2、2; *;
Author Affiliations
  • 11. School of Information Science, Beijing Language and Culture University, Beijing 100083, China
  • 22. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
  • show less
    Figures & Tables(9)
    The structure of BERT-CNN
    • Table 1. The dataset of K stars

      View table
      View in Article

      Table 1. The dataset of K stars

      Stellar Subclass
      Type
      K1K3K5K7
      SNRs(60, 65)(60, 65)(60, 65)(60, 65)
      Number1115959850317
    • Table 1. The dataset of G stars

      View table
      View in Article

      Table 1. The dataset of G stars

      Stellar Subclass TypeG0G2G5
      SNRs(55, 65)(60, 65)(40, 70)
      Number949992600
    • Table 1. The dataset of F stars

      View table
      View in Article

      Table 1. The dataset of F stars

      Stellar Subclass TypeF2F5F9
      SNRs(50, 65)(65, 70)(75, 80)
      Number1 9151 6711 535
    • Table 2. The parameters of CNN and BERT-CNN

      View table
      View in Article

      Table 2. The parameters of CNN and BERT-CNN

      参数CNNBERT-CNN
      batch_size12832
      learning_rate1×10-31×10-3
      hidden_units128256
      dropout0.50.5
    • Table 3. The experimental results of BERT-CNN on the G-type dataset

      View table
      View in Article

      Table 3. The experimental results of BERT-CNN on the G-type dataset

      Training
      Size
      Test
      Size
      PRF1
      30%(762)70%(1 779)0.842 20.873 10.857 3
      40%(1 016)60%(1 525)0.892 50.905 50.899 0
      50%(1 271)50%(1 270)0.916 10.933 30.924 6
      60%(1 525)40%(1 016)0.937 80.945 60.941 7
      70%(1 779)30%(762)0.962 00.965 90.963 9
    • Table 3. The experimental results of BERT-CNN on the F-type dataset

      View table
      View in Article

      Table 3. The experimental results of BERT-CNN on the F-type dataset

      Training
      Size
      Test
      Size
      PRF1
      30%(1 536)70%(3 585)0.847 10.866 50.856 7
      40%(2 048)60%(3 073)0.875 60.890 00.882 7
      50%(2 561)50%(2 560)0.910 10.927 90.918 9
      60%(3 073)40%(2 048)0.947 00.926 60.936 7
      70%(3 585)30%(1 536)0.956 50.970 80.965 6
    • Table 3. The experimental results of BERT-CNN on the K-type dataset

      View table
      View in Article

      Table 3. The experimental results of BERT-CNN on the K-type dataset

      Training
      Size
      Test
      Size
      PRF1
      30%(972)70%(2 269)0.881 40.870 50.875 9
      40%(1 296)60%(1 945)0.906 40.897 80.902 1
      50%(1 621)50%(1 620)0.935 10.927 10.931 1
      60%(1 945)40%(1 296)0.943 60.952 70.948 1
      70%(2 269)30%(972)0.969 60.980 90.975 2
    • Table 4. Comparison of experimental results

      View table
      View in Article

      Table 4. Comparison of experimental results

      Stellar
      Type
      Training
      Size
      Test
      Size
      SVMCNNBERT-CNN
      K70%(2 269)30%(972)0.849 80.880 70.931 1
      F70%(3 585)30%(1 536)0.831 40.889 30.910 8
      G70%(1 779)30%(762)0.871 40.904 20.923 9
      Average classification accuracy0.850 90.891 40.921 9
    Tools

    Get Citation

    Copy Citation Text

    Zhong-bao LIU, Jie WANG. Research on the Improvement of Spectra Classification Performance With the High-Performance Hybrid Deep Learning Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 699

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 16, 2021

    Accepted: Apr. 22, 2021

    Published Online: Apr. 19, 2022

    The Author Email: LIU Zhong-bao (zbliu@blcu.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)03-0699-05

    Topics