Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1676(2024)
Impregnation Modification of La0.2Sr0.8TiO3--Based Fiber Fuel Electrode for Reversible Solid Oxide Cells
[1] [1] ZHAO C H, LI Y F, ZHANG W Q, et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells[J]. Energy Environ Sci, 2020, 13(1): 53-85.
[2] [2] YANG Zhibin, ZHANG Panpan, LEI Ze, et al. J Chin Ceram Soc, 2021, 49(1): 56-69.
[3] [3] CHENG Z, WANG J H, CHOI Y, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives[J]. Energy Environ Sci, 2011, 4(11): 4380-4409.
[4] [4] WANG Y, WU C R, ZU B F, et al. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study[J]. J Power Sources, 2021, 516: 230660.
[5] [5] BILAL HANIF M, MOTOLA M, QAYYUM S, et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem Eng J, 2022, 428: 132603.
[6] [6] ZHANG M, DU Z H, ZHANG Y, et al. Progress of perovskites as electrodes for symmetrical solid oxide fuel cells[J]. ACS Appl Energy Mater, 2022, 5(11): 13081-13095.
[7] [7] BLENNOW P, HANSEN K K, REINE WALLENBERG L, et al. Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes[J]. Electrochim Acta, 2006, 52(4): 1651-1661.
[8] [8] HU Qianjun. Study on electrochemical performance and stability of LaxSr1-xTiO3 nanofiber-based composite anodes[D]. Harbin: Harbin Institute of Technology, 2018.
[9] [9] BIN YOO K, PARK B H, CHOI G M. Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel[J]. Solid State Ion, 2012, 225: 104-107.
[10] [10] SEAL S, JEYARANJAN A, NEAL C J, et al. Engineered defects in cerium oxides: Tuning chemical reactivity for biomedical, environmental, & energy applications[J]. Nanoscale, 2020, 12(13): 6879-6899.
[11] [11] LV H F, ZHOU Y J, ZHANG X M, et al. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electroreduction in solid oxide electrolysis cell[J]. J Energy Chem, 2019, 35: 71-78.
[12] [12] HU Xingguo, LIU Limin, QIAN Xinyuan, et al. J Ceram, 2022, 43(3): 401-411.
[13] [13] SUN X F, WANG S R, WANG Z R, et al. Anode performance of LST-xCeO2 for solid oxide fuel cells[J]. J Power Sources, 2008, 183(1): 114-117.
[14] [14] SAVANIU C D, IRVINE J T S. La-doped SrTiO3 as anode material for IT-SOFC[J]. Solid State Ion, 2011, 192(1): 491-493.
[15] [15] HUANG Z D, ZHAO Z, QI H Y, et al. Enhancing cathode performance for CO2 electrolysis with Ce0.9M0.1O2-δ (M=Fe, Co, Ni) catalysts in solid oxide electrolysis cell[J]. J Energy Chem, 2020, 40: 46-51.
[16] [16] ZHANG C L, YU S H. Nanoparticles meet electrospinning: Recent advances and future prospects[J]. Chem Soc Rev, 2014, 43(13): 4423-4448.
[17] [17] LIU Z X, GU Y Y, BI L. Applications of electrospun nanofibers in solid oxide fuel cells—A review[J]. J Alloys Compd, 2023, 937: 168288.
[18] [18] ZHANG W W, WANG H C, GUAN K, et al. La0.6Sr0.4Co0.2Fe0.8O3-δ/ CeO2 heterostructured composite nanofibers as a highly active and robust cathode catalyst for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2019, 11(30): 26830-26841.
[19] [19] ZHANG X X, ZHENG Y P, DING Z F, et al. Nanoscale intertwined biphase nanofiber as active and durable air electrode for solid oxide electrochemical cells[J]. ACS Sustainable Chem Eng, 2023, 11(23): 8592-8602.
[20] [20] CHANG Wenbo. Study of the preparation and performance of the anode materia La doped SrTiO3 for solid oxide fuel cell[D]. Harbin: Harbin Institute of Technology, 2015.
[21] [21] CHOI Y, CHO H J, KIM J, et al. Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells[J]. ACS Nano, 2022, 16(9): 14517-14526.
[22] [22] XU C M, ZHANG L H, SUN W, et al. Building efficient and durable 3D nanotubes electrode for solid oxide electrolytic cells[J]. J Power Sources, 2023, 556: 232479.
[23] [23] WAN T H, SACCOCCIO M, CHEN C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools[J]. Electrochim Acta, 2015, 184: 483-499.
[24] [24] LIU J P, CIUCCI F. The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data[J]. Electrochim Acta, 2020, 331: 135316.
[25] [25] HOU Y T, WANG L J, BIAN L Z, et al. Excellent electrochemical performance of La0.3Sr0.7Fe0.9Ti0.1O3-δ as a symmetric electrode for solid oxide cells[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22381-22390.
[26] [26] JANG D Y, KIM H K, KIM J W, et al. Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition[J]. J Power Sources, 2015, 274: 611-618.
[27] [27] WANG Z H, MENG Y J, SINGH M, et al. Ni/NiO exsolved perovskite La0.2Sr0.7Ti0.9Ni0.1O3-δ for semiconductor-ionic fuel cells: Roles of electrocatalytic activity and physical junctions[J]. ACS Appl Mater Interfaces, 2023, 15(1): 870-881.
[28] [28] ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2?δ coherent interface[J]. J Mater Chem A, 2022, 10(7): 3495-3505.
[29] [29] LI Y H, SINGH M, ZHUANG Z C, et al. Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode[J]. Sci China Mater, 2021, 64(5): 1114-1126.
[30] [30] AMAYA-DUE?AS D M, CHEN G X, WEIDENKAFF A, et al. A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs)[J]. J Mater Chem A, 2021, 9(9): 5685-5701.
[31] [31] LI Z S, PENG M L, ZHANG X X, et al. Preparation of SOFC anodes at lower temperature with boosted electrochemical performance[J]. ACS Appl Energy Mater, 2023, 6(6): 3616-3626.
Get Citation
Copy Citation Text
LU Kaizhen, WANG Leying, LUO Linghong, CHENG Liang, XU Xu, WU Yefan. Impregnation Modification of La0.2Sr0.8TiO3--Based Fiber Fuel Electrode for Reversible Solid Oxide Cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1676
Category:
Received: Aug. 23, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: Leying WANG (wly8858@163.com)