Optics and Precision Engineering, Volume. 28, Issue 1, 200(2020)

Straw detection algorithm based on semantic segmentation in complex farm scenarios

LIU Yuan-yuan1,*... ZHANG Shuo1, YU Hai-ye2, WANG Yue-yong3 and WANG Jia-mu1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(22)

    [1] [1] HE M. Effects of Straw Returning Methods On Black Soil Organic Matter[D].Beijing:Chinese Academy of Agricultural Sciences,2016.(in Chinese)

    [2] [2] GONG CH W, LI J Y, LI X B, et al.. Influence of straw burning and dust on aerosol optical properties[J].Opt. Precision Eng., 2015, 23(10): 2768-2777.(in Chinese)

    [3] [3] WANG L L, XU L J, WEI SH, et al.. Straw coverage detection method based on Sauvola and Otsu segmentation algorithm[J]. Agricultural Engineering, 2017, 7(4):29-35. (in Chinese)

    [4] [4] LI H W, LI H, HE J, et al.. Field coverage detection system of straw based on artificial neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(6):58-62. (in Chinese)

    [5] [5] LIU Y Y, WANG Y Y, YU H Y, et al.. Detection of straw coverage rate based on multi-threshold image segmentation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):27-35,55. (in Chinese)

    [6] [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6):84-90.

    [7] [7] PAN X ZH, ZHANG SH Q, GUO W P. Video-based facial expression recognition using multimodal deep convolutional neural networks[J].Opt. Precision Eng., 2019, 27(4): 963-970. (in Chinese)

    [8] [8] GUO B Q, WANG N. Pedestrian intruding railway clearance classification algorithm based on improved deep convolutional network[J].Opt. Precision Eng., 2018, 26(12): 3040-3050. (in Chinese)

    [9] [9] L? X Q, WU L, GU Y, et al.. Detection of low dose CT pulmonary nodules based on 3D convolution neural network[J]. Opt. Precision Eng., 2018, 26(5): 1211-1218. (in Chinese)

    [10] [10] PAN R, SUN W. Deep learning target detection based on pre-segmentation and regression [J]. Opt. Precision Eng., 2017,25(10s): 221-227. (in Chinese)

    [11] [11] DONG Y, FENG H J, XU ZH H, et al.. Attention Res-Unet: an efficient shadow detection algorithm [J].Journal of ZheJiang University (Engineering Science), 2019, 53(2): 373-381+406. (in Chinese)

    [12] [12] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation [C]. International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer, 2015: 234-241.

    [13] [13] JONATHAN L, EVAN S, TREVOR D. Fully Convolutional Networks for Semantic Segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431- 3440.

    [14] [14] HE K M , ZHANG X Y , REN S Q , et al.. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770- 778.

    [15] [15] FRANCOIS C.Xception: Deep Learning with Depthwise Separable Convolutions[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017:1251-1258.

    [16] [16] VASWANI A, SHAZEER N, PARMAR N, et al.. Attention is All You Need[C]. Advances in neural information processing systems, 2017: 5998-6008.

    [17] [17] ZHAO B, WU X, FENG J, et al.. Diversified visual attention networks for fine-grained object classification[J]. IEEE Transactions on Multimedia, 2017, 19(6): 1245-1256.

    [18] [18] JO Y J, CHO H, LEE S Y, et al.. Quantitative phase imaging and artificial intelligence: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1): 1-14.

    [19] [19] LI H, XIONG P, AN J, et al.. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv:1805.10180, 2018.

    [20] [20] LIN T Y, GOYAL P, GIRSHICK R, et al.. Focal Loss for Dense Object Detection[C].Proceedings of the IEEE international conference on computer vision, 2017: 2980-2988.

    [21] [21] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.

    [22] [22] CHEN L C, ZHU Y, PAPANDREOU G, et al.. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C].Proceedings of the European conference on computer vision (ECCV), 2018: 801-818.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yuan-yuan, ZHANG Shuo, YU Hai-ye, WANG Yue-yong, WANG Jia-mu. Straw detection algorithm based on semantic segmentation in complex farm scenarios[J]. Optics and Precision Engineering, 2020, 28(1): 200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 27, 2019

    Accepted: --

    Published Online: Mar. 25, 2020

    The Author Email: Yuan-yuan LIU (liuyuanyuan1980@126.com)

    DOI:10.3788/ope.20202801.0200

    Topics