Optics and Precision Engineering, Volume. 28, Issue 4, 923(2020)
Effect of microscopic characteristics of constrained substrate on the inhibition zone and adhesion
[1] [1] WOHLERS T. Wohlers report: 3D printing and additive manufacturing state of the industry[R]. Fort Collins: Wohlers Associates, 2016.
WOHLERS T. Wohlers report: 3D printing and additive manufacturing state of the industry[R]. Fort Collins: Wohlers Associates, 2016.
[2] [2] EMAMI M M, BARAZANDEH F, YAGHMAIE F. Scanning-projection based stereolithography: method and structure[J]. Sensors and Actuators A: Physical, 2014, 218: 116-124.
EMAMI M M, BARAZANDEH F, YAGHMAIE F. Scanning-projection based stereolithography: method and structure[J]. Sensors and Actuators A: Physical, 2014, 218: 116-124.
[3] [3] LAN H B, LI D CH, LU B H. Micro-and nanoscale 3D printing[J]. Science China Technological Sciences, 2015, 45(9): 919-940. (in Chinese)
LAN H B, LI D CH, LU B H. Micro-and nanoscale 3D printing[J]. Science China Technological Sciences, 2015, 45(9): 919-940. (in Chinese)
[4] [4] VAEZI M, SEITZ H and YANG S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5): 1721-1754.
VAEZI M, SEITZ H and YANG S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5): 1721-1754.
[6] [6] CHEN Z W, LI Z Y, LI J J, et al.. 3D printing of ceramics: A review[J]. Journal of the European Ceramic Society, 2019, 39: 661-687.
CHEN Z W, LI Z Y, LI J J, et al.. 3D printing of ceramics: A review[J]. Journal of the European Ceramic Society, 2019, 39: 661-687.
[8] [8] ZHOU C, YE H, ZHANG F. A novel low-cost stereolithography process based on vector scanning and mask projection for high-accuracy, high-speed, high-throughput, and large-area fabrication[J]. Journal of Computing and Information Science in Engineering, 2015, 15(1): 011003-1-8.
ZHOU C, YE H, ZHANG F. A novel low-cost stereolithography process based on vector scanning and mask projection for high-accuracy, high-speed, high-throughput, and large-area fabrication[J]. Journal of Computing and Information Science in Engineering, 2015, 15(1): 011003-1-8.
[9] [9] LIRAVI F, DAS S, ZHOU C. Separation force analysis and prediction based on cohesive element model for constrained-surface stereolithography[J]. Computer-Aided Design, 2015, 69: 134-142.
LIRAVI F, DAS S, ZHOU C. Separation force analysis and prediction based on cohesive element model for constrained-surface stereolithography[J]. Computer-Aided Design, 2015, 69: 134-142.
[10] [10] HUANG Y M, JIANG C P. On-line force monitoring of platform ascending rapid prototyping system[J]. Journal of Materials Processing Technology, 2005, 159(2): 257-264.
HUANG Y M, JIANG C P. On-line force monitoring of platform ascending rapid prototyping system[J]. Journal of Materials Processing Technology, 2005, 159(2): 257-264.
[11] [11] PAN Y Y, ZHOU C, CHEN Y. A fast mask projection stereolithography process for fabricating digital models in minutes[J]. Journal of Manufacturing Science and Engineering, 2012, 134(5): 051011.
PAN Y Y, ZHOU C, CHEN Y. A fast mask projection stereolithography process for fabricating digital models in minutes[J]. Journal of Manufacturing Science and Engineering, 2012, 134(5): 051011.
[12] [12] CHEN Y, ZHOU C, LAO J Y. A layerless additive manufacturing process based on CNC accumulation[J]. Rapid Prototyping Journal, 2011, 17(3): 218-227.
CHEN Y, ZHOU C, LAO J Y. A layerless additive manufacturing process based on CNC accumulation[J]. Rapid Prototyping Journal, 2011, 17(3): 218-227.
[13] [13] PAN Y Y, CHEN Y, ZHOU C. Fast recoating methods for the projection-based stereolithography process in micro- and macro-scales[C]. Proceeding of Solid Freeform Fabrication Symposium, Austin, Texas, August 8-10, 2012: 846-862.
PAN Y Y, CHEN Y, ZHOU C. Fast recoating methods for the projection-based stereolithography process in micro- and macro-scales[C]. Proceeding of Solid Freeform Fabrication Symposium, Austin, Texas, August 8-10, 2012: 846-862.
[14] [14] HANG Y, ABHISHEK V, SONJOY D, et al.. Investigation of separation force for constrained-surface stereolithography process from mechanics perspective[J]. Rapid Prototyping Journal, 2017, 23(4): 696-710.
HANG Y, ABHISHEK V, SONJOY D, et al.. Investigation of separation force for constrained-surface stereolithography process from mechanics perspective[J]. Rapid Prototyping Journal, 2017, 23(4): 696-710.
[15] [15] ZHOU C, YONG C, YANG, Z G, et al.. Digital material fabrication using mask-image-projection-based stereolithography[J]. Rapid Prototyping Journal, 2013, 19(3): 153-165.
ZHOU C, YONG C, YANG, Z G, et al.. Digital material fabrication using mask-image-projection-based stereolithography[J]. Rapid Prototyping Journal, 2013, 19(3): 153-165.
[16] [16] SRIVATSAN, T S and SUDARDHAN, T S. Additive Manufacturing: Innovations, Advances, and Applications[M]. New York: Taylor & Francis Group, 2016.
SRIVATSAN, T S and SUDARDHAN, T S. Additive Manufacturing: Innovations, Advances, and Applications[M]. New York: Taylor & Francis Group, 2016.
[17] [17] WANG Y Q, JIA ZH Y, ZHAO W H, et al.. The key technology and research status of mask projection stereolithography[J]. Machine Design and Research, 2009, 25(2): 96-100. (in Chinese)
WANG Y Q, JIA ZH Y, ZHAO W H, et al.. The key technology and research status of mask projection stereolithography[J]. Machine Design and Research, 2009, 25(2): 96-100. (in Chinese)
[18] [18] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al.. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352.
TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al.. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352.
[19] [19] ALESSANDRA V, MARZIA Q, ANGELICA C, et al.. Oxygen-inhibition lithography for the fabrication of multipolymeric structures[J]. Advanced Materials, 2015, 27(37): 4560-4565.
ALESSANDRA V, MARZIA Q, ANGELICA C, et al.. Oxygen-inhibition lithography for the fabrication of multipolymeric structures[J]. Advanced Materials, 2015, 27(37): 4560-4565.
[20] [20] SAMUEL C L, BRANISLAV H, HARALD W, et al.. Strategies to reduce oxygen inhibition in photoinduced polymerization[J]. Chemical Reviews, 2014, 114: 557-589.
SAMUEL C L, BRANISLAV H, HARALD W, et al.. Strategies to reduce oxygen inhibition in photoinduced polymerization[J]. Chemical Reviews, 2014, 114: 557-589.
[21] [21] JOHNSON A R, CAUDILL C L, TUMBLESTON J R, et al.. Single-step fabrication of computationally designed microneedles by continuous liquid interface production [J]. PLOS ONE, 2016, 11(9): e0162518.
JOHNSON A R, CAUDILL C L, TUMBLESTON J R, et al.. Single-step fabrication of computationally designed microneedles by continuous liquid interface production [J]. PLOS ONE, 2016, 11(9): e0162518.
[22] [22] JANUSZIEWICZ R, TUMBLESTON J R, QUINTANILLA A L, et al.. Layerless fabrication with continuous liquid interface production [J]. PNAS, 2016, 113(42): 11703-11708.
JANUSZIEWICZ R, TUMBLESTON J R, QUINTANILLA A L, et al.. Layerless fabrication with continuous liquid interface production [J]. PNAS, 2016, 113(42): 11703-11708.
Get Citation
Copy Citation Text
WANG Quan-dai, LIANG Min, SHI Bo-hui, LI Peng-yang, LI Yan. Effect of microscopic characteristics of constrained substrate on the inhibition zone and adhesion[J]. Optics and Precision Engineering, 2020, 28(4): 923
Category:
Received: Aug. 27, 2019
Accepted: --
Published Online: Jul. 2, 2020
The Author Email: Quan-dai WANG (quandaiw@163.com)