Infrared and Laser Engineering, Volume. 50, Issue 12, 20211058(2021)
Single-pixel imaging and metasurface imaging (Invited)
[1] [1] Sen P, Chen B, Garg G, et al. Dual photography [C]ACM SIGGRAPH, ACM, 2005: 745755.
[2] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Process Mag, 25, 83-91(2008).
[3] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Opt Express, 21, 23068-23074(2013).
[4] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Sci Rep, 6, 24752(2016).
[5] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera[J]. Opt Express, 26, 10550-10558(2018).
[6] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).
[7] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Sci Rep, 5, 1-8(2015).
[8] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Appl Phys Lett, 93, 121105(2008).
[9] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nat Photonics, 8, 605-609(2014).
[10] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Sci Adv, 2, e1600190(2016).
[11] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proc Natl Acad Sci U S A, 109, E1679-E1687(2012).
[12] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).
[13] Wu Y, Ye P, Mirza I O, et al. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM)[J]. Opt Express, 18, 24565-24578(2010).
[14] Tajahuerce E, Durán V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Opt Express, 22, 16945-16955(2014).
[15] Durán V, Soldevila F, Irles E, et al. Compressive imaging in scattering media[J]. Opt Express, 23, 14424-14433(2015).
[16] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video[J]. J Opt, 18, 035203(2016).
[17] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).
[18] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Appl Opt, 50, 5917-5920(2011).
[19] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Opt Express, 24, 10476-10485(2016).
[20] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Opt Lett, 41, 2497-2500(2016).
[21] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system[J]. Sci Rep, 4, 1-6(2014).
[22] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Sci Rep, 6, 26133(2016).
[23] Pittman T, Shih Y, Strekalov D, et al. Optical imaging by means of two photonquantum entanglement[J]. Phys Rev A, 52, R3429(1995).
[24] Strekalov D, Sergienko A, Klyshko D, et al. Observation of two photon "ghost" interference and diffraction[J]. Phys Rev Lett, 74, 3600(1995).
[25] Bennink R S, Bentley S J, Boyd R W. "Two photon" coincidence imaging witha classical source[J]. Phys Rev Lett, 89, 113601(2002).
[26] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermal light[J]. Phys Rev Lett, 94, 063601(2005).
[27] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 78, 061802(2008).
[28] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nat Photonics, 13, 13-20(2019).
[29] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Opt Lett, 35, 2391-2393(2010).
[30] Erkmen B I. Computational ghost imaging for remote sensing[J]. JOSA A, 29, 782-789(2012).
[31] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Phys Rev Lett, 104, 253603(2010).
[32] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl Phys Lett, 101, 141123(2012).
[33] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl Phys Lett, 95, 131110(2009).
[34] [34] Deng Chao, Suo Jinli, Zhang Zhili, et al. Coding decoding of optical infmation in singlepixel imaging[J]. Infrared Laser Engineering, 2019, 48(6): 0603004. (in Chinese)
[35] Liu Y, Zhang X. Metamaterials: A new frontier of science and technology[J]. Chem Soc Rev, 40, 2494-2507(2011).
[36] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys Rev Lett, 84, 4184(2000).
[37] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).
[38] Chen H T, Taylor A J, Yu N. A review of metasurfaces: Physics and applications[J]. Rep Prog Phys, 79, 076401(2016).
[39] Quevedo-Teruel O, Chen H, Díaz-Rubio A, et al. Roadmap on metasurfaces[J]. J Opt, 21, 073002(2019).
[40] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: From microwaves to visible[J]. Phys Rep, 634, 1-72(2016).
[41] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[42] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427-427(2012).
[43] Huang L, Chen X, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Lett, 12, 5750-5755(2012).
[44] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 12, 6223-6229(2012).
[45] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett, 12, 4932-4936(2012).
[46] Ni X, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light Sci Appl, 2, e72-e72(2013).
[47] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 13, 829-834(2013).
[48] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 3, 1-6(2012).
[49] Zeng J, Li L, Yang X, et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces[J]. Nano Lett, 16, 3101-3108(2016).
[50] Zeng J, Gao J, Luk T S, et al. Structuring light by concentric-ring patterned magnetic metamaterial cavities[J]. Nano Lett, 15, 5363-5368(2015).
[51] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Lett, 14, 1394-1399(2014).
[52] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 10, 937-943(2015).
[53] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 12, 6328-6333(2012).
[54] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Opt Lett, 38, 513-515(2013).
[55] Jiang S C, Xiong X, Hu Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Phys Rev X, 4, 021026(2014).
[56] Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Lett, 13, 1086-1091(2013).
[57] Kruk S, Hopkins B, Kravchenko I I, et al. Invited Article: Broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 1, 030801(2016).
[58] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 4, 1-8(2013).
[59] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).
[60] Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 6, 1-7(2015).
[61] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 118, 113901(2017).
[62] Lee G Y, Sung J, Lee B. Recent advances in metasurface hologram technologies (Invited paper)[J]. ETRI Journal, 41, 10-22(2019).
[63] Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).
[64] Li L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nat Commun, 8, 1-7(2017).
[65] Liu H C, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Sci Adv, 3, e1701477(2017).
[66] Zhao Haixiao, Guo Yan, Li Peiming, et al. Investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength[J]. Laser & Optoelectronics Progress, 58, 1011010(2021).
[67] Zheng P, Dai Q, Li Z, et al. Metasurface-based key for computational imaging encryption investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength[J]. Sci Adv, 7, eabg0363(2021).
[68] [68] Nikolova N K. Introduction to Microwave Imaging[M]. Cambridge: Cambridge University Press, 2017.
[69] Chen X. Subspace-based optimization method for solving inverse-scattering problems[J]. IEEE Transactions on Geoscience & Remote Sensing, 48, 42-49(2009).
[70] Palmeri R, Bevacqua M T, Crocco L, et al. Microwave imaging via distorted iterated virtual experiments[J]. IEEE Transactions on Antennas and Propagation, 65, 829-838(2016).
[71] Ghasr M T, Abou-Khousa M A, Kharkovsky S, et al. Portable real-time microwave camera at 24 GHz[J]. IEEE Transactions on Antennas and Propagation, 60, 1114-1125(2011).
[72] [72] Soumekh M. Synthetic Aperture Radar Signal Processing[M]. New Yk: Wiley, 1999.
[73] Ahmed S S, Schiessl A, Schmidt L P. A novel fully electronic active real-time imager based on a planar multistatic sparse array[J]. IEEE Trans Microw Theory Tech, 59, 3567-3576(2011).
[74] Gonzalez-Valdes B, Allan G, Rodriguez-Vaqueiro Y, et al. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging[J]. IEEE Transactions on Antennas and Propagation, 62, 1716-1722(2013).
[75] [75] Jackson D R, Onliner A A. Leakywave Antennas [M]Balanis C A. Modern Antenna Hbook, New Yk: Wiley, 2008.
[76] Holloway C L, Dienstfrey A, Kuester E F, et al. A discussion on the interpretation and characterization of metafilms/ metasurfaces: The two-dimensional equivalent of metamaterials[J]. Metamaterials, 3, 100-112(2009).
[77] Hunt J, Driscoll T, Mrozack A, et al. Metamaterial apertures for computational imaging[J]. Science, 339, 310-313(2013).
[78] Hunt J, Gollub J, Driscoll T, et al. Metamaterial microwave holographic imaging system[J]. JOSA A, 31, 2109-2119(2014).
[79] Sleasman T, Imani M F, Gollub J N, et al. Dynamic metamaterial aperture for microwave imaging[J]. Appl Phys Lett, 107, 204104(2015).
[80] Sleasman T, Boyarsky M, Imani M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies[J]. JOSA B, 33, 1098-1111(2016).
[81] Diebold A V, Imani M F, Sleasman T, et al. Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture[J]. Appl Opt, 57, 2142-2149(2018).
[82] Diebold A V, Imani M F, Sleasman T, et al. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures[J]. Optica, 5, 1529-1541(2018).
[83] Liu Weitao, Sun Shuai, Hu Hongkang, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 58, 1011001(2021).
Get Citation
Copy Citation Text
Peixia Zheng, Yichen Liu, Hongchao Liu. Single-pixel imaging and metasurface imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211058
Category: Special issue—Single-pixel imaging
Received: Oct. 11, 2021
Accepted: --
Published Online: Feb. 9, 2022
The Author Email: Hongchao Liu (hcliu@um.edu.mo)