Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3092(2022)

UV-Visible-NIR Ultrabroadband Mechanoluminesence from Sr3Y2Ge3O12:Bi3+ and Its

SHAO Peishan1,*... XIONG Puxian1, XIAO Yao1, QIN Kexin1, SUN Yongsheng1, CHEN Kang1, CHEN Dongdan1 and YANG Zhongmin2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(35)

    [1] [1] NCEL A, VARLIKLI C, MCMILLEN C D, et al. Triboluminescent electrospun mats with blue-green emission under mechanical force[J]. J Phys Chem C, 2017, 121(21): 11709-11716.

    [2] [2] CHANDRA B P. Mechanoluminescence, Lumin Solids: Springer, 1998: 361-389.

    [3] [3] CHANDRA B P, RATHORE A S. Classification of mechanoluminescence[J]. Cryst Res Technol, 1995, 30(7): 885-896.

    [4] [4] AKIYAMA M, XU Chaonan, NONAKA K, et al. Intense visible light emission from Sr3Al2O6:Eu, Dy[J]. Appl Phys Lett, 1998, 73(21): 3046-3048.

    [5] [5] XU Chaonan, WANTANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission[J]. Appl Phys Lett, 1999, 74(9): 1236-1238.

    [6] [6] XU Chaonan, WANTANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence[J]. Appl Phys Lett, 1999, 74(17): 2414-2416.

    [9] [9] TERASAWA Y, XU Chaonan, YAMADA H, et al. Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions[C]. IOP Conf Ser: Mater Sci Eng, 2011, 18(21): 212013.

    [10] [10] XIONG Puxian, PENG Mingying. Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3:Nd3+ for stress sensors[J]. J Mater Chem C, 2019, 7(21): 6301-6307.

    [11] [11] XIONG Puxian, PENG Mingying, CAO Jiangkun, et al. Near infrared mechanoluminescence from Sr3Sn2O7:Nd3+ for in situ biomechanical sensor and dynamic pressure mapping[J]. J Am Ceram Soc, 2019, 102(10): 5899-5909.

    [12] [12] XIONG Puxian, PENG Mingying, QIN Kexin, et al. Visible to near‐infrared persistent luminescence and mechanoluminescence from Pr3+‐doped LiGa5O8 for energy storage and bioimaging[J]. Adv Opt Mater, 2019, 7(24): 1901107.

    [13] [13] XIONG Puxian, HUANG Bolong, PENG Dengfeng, et al. Self‐Recoverable mechanically induced instant luminescence from Cr3+‐doped LiGa5O8[J]. Adv Funct Mater, 2021, 31(19): 2010685.

    [14] [14] XIONG Puxian, PENG Mingying, YANG Zhongmin. Near-infrared mechanoluminescence crystals: a review[J]. iScience, 2021, 24(1): 101944.

    [15] [15] WANG Xiu, BOUTINAUD P, LI Liyi, et al. Novel persistent and tribo-luminescence from bismuth ion pairs doped strontium gallate[J]. J Mater Chem C, 2018, 6(38): 10367-10375.

    [16] [16] QASEM A, XIONG Puxian, MA Zhijun, et al. Recent advances in mechanoluminescence of doped zinc sulfides[J]. Laser Photon Rev, 2021, 15(12): 20.

    [17] [17] LIU Xiangyu, XIONG Puxian, LI Lejing, et al. Monitoring cardiovascular disease severity using near-infrared mechanoluminescent materials as a built-in indicator[J]. Mater Horizons, 2022, 9: 1658-1669.

    [18] [18] ZHANG Hongwu, YAMADA H, TERASAKI N, et al. Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce, Ho[J]. Appl Phys Lett, 2007, 91(8): 081905.

    [19] [19] LI Yuanyuan, XIONG Puxian, LIU Gaochao, et al. Visible and near-infrared emission in Ba3Sc4O9:Bi phosphor: an investigation on bismuth valence modification[J]. Inorg Chem, 2021, 60(17): 13510-13516.

    [20] [20] XIONG Puxian, LI Yuanyuan, PENG Mingying. Recent advances in super broad infrared luminescence bismuth-doped crystals[J]. iScience, 2020, 23(10): 101578.

    [21] [21] YANG Yunling, LI Ting, GUO Fan, et al. Multiple color emission of mechanoluminescence and photoluminescence from SrZnSO:Bi3+ for multimode anticounterfeiting[J]. Inorg Chem, 2022, 61(10): 4302-4311.

    [22] [22] HU Rui, ZHANG Ying, ZHAO Yan, et al. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display[J]. Mater Chem Front, 2021, 5(18): 6891-6903.

    [23] [23] LIU Shiqi, LIU Rong, YANG Xiuxia, et al. New mode of stress sensing in multicolor (Ca1-xSrx)8Mg3Al2Si7O28:Eu2+ solid-solution compounds[J]. Nano Energy, 2022, 93: 106799.

    [24] [24] WU Sheng, LIU Quan, XIONG Puxian, et al. Single Bi3+ ultrabroadband white luminescence in double perovskite via crystal lattice engineering toward light-emitting diode applications[J]. Adv Opt Mater, 2022, 10: 2102842.

    [25] [25] ZHOU Zhihao, WANG Xiu, YI Xiaodong, et al. Rechargeable and sunlight-activated Sr3Y2Ge3O12:Bi3+ UV-Visible-NIR persistent luminescence material for night-vision signage and optical information storage[J]. Chem Eng J, 2021, 421, 127820.

    [26] [26] PENG Mingying, PEI Zhiwu, HONG Guangyan, et al. The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence Eu2+ of BaMgSiO4: phosphor[J]. J Mater Chem, 2003, 13(5): 1202-1205.

    [27] [27] CASTAING V, SONTAKKE A D, XU Jian, et al. Persistent energy transfer in ZGO:Cr3+, Yb3+: a new strategy to design nano glass-ceramics featuring deep red and near infrared persistent luminescence[J]. Phys Chem Chem Phys, 2019, 21(35): 19458-19468.

    [28] [28] KANG Fengwen, ZHANG Yi, PENG Mingying. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+, Bi3+ phosphor for ultraviolet converted LEDs[J]. Inorg Chem, 2015, 54(4):1462-1473.

    [29] [29] XING Gongcheng, GAO Zhiyu, TAO Mengxuan, et al. Novel orange-yellow-green color-tunable Bi3+-doped Ba3Y4-wLuwO9 (0≤w≤4) luminescent materials: site migration and photoluminescence control[J]. Inorg Chem Front, 2019, 6(12): 3598-3603.

    [30] [30] LIU Dongjie, YUN Xiaohan, DANG Peipei, et al. Yellow/orange-emitting ABZn2Ga2O7:Bi3+ (A=Ca, Sr; B=Ba, Sr) phosphors: optical temperature sensing and white light-emitting diode applications[J]. Chem Mater, 2020, 32(7): 3065-3077.

    [31] [31] ZHAO Dan, LI Yanan, ZHANG Ruijuan, et al. Tuning emission from greenish to blue via chemical composition modulation in solid solutions (Sr1-yCay)2Sb2O7:Bi3+ under near-UV light excitation[J]. ACS Sustainable Chem Eng, 2021, 9(22): 7569-7577.

    [32] [32] WANG Xiandi, ZHANG Hanlu, YU Ruomeng, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Adv Mater, 2015, 27(14): 2324-2331.

    [33] [33] WANG Wei, PENG Dengfeng, ZHANGHanlu, et al. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging[J]. Opt Commun, 2017, 395: 24-28.

    [34] [34] LYU Tianshuai, DORENBOS P, XIONG Puxian, et al. LiTaO3:Bi3+, Tb3+, Ga3+, Ge4+: A smart perovskite with high charge carrier storage capacity for X‐ray imaging, stress sensing, and Non‐Real‐Time recording[J]. Adv Funct Mater, 2022: 2206024.

    [35] [35] SHAO Peishan, XIONG Puxian, XIAO Yao, et al. Novel spectral band: Ultraviolet a mechanoluminescence from Bi3+-doped LiYGeO4[J]. J Mater Chem C, 2022, DOI: 10.1039/d2tc03585e.

    [36] [36] XIAO Yao, XIONG Puxian, ZHANG Shuai, et al. Deep-red to NIR mechanoluminescence in centrosymmetric perovskite MgGeO3: Mn2+ for potential dynamic signature anti-counterfeiting[J]. Chem Eng J, 2023, 453: 139671.

    Tools

    Get Citation

    Copy Citation Text

    SHAO Peishan, XIONG Puxian, XIAO Yao, QIN Kexin, SUN Yongsheng, CHEN Kang, CHEN Dongdan, YANG Zhongmin. UV-Visible-NIR Ultrabroadband Mechanoluminesence from Sr3Y2Ge3O12:Bi3+ and Its[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3092

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 18, 2022

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email: Peishan SHAO (201830301101@mail.scut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220410

    Topics