Semiconductor Optoelectronics, Volume. 45, Issue 2, 211(2024)

Single Soliton Microcomb Based on High-Q On-Chip Si3N4 Optical Microresonators

DU Runchang
Author Affiliations
  • [in Chinese]
  • show less
    References(41)

    [1] [1] Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control[J]. Nature, 2017, 546: 622-626.

    [2] [2] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018,361(6402): eaan8083.

    [3] [3] Yang Q F, Shen B, Wang H, et al. Vernier spectrometer using counterpropagating soliton microcombs[J]. Science,2019, 363(6430): 965-968.

    [4] [4] Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator[J]. Nature, 2018, 562: 401-405.

    [5] [5] Spencer D T, Drake T, Briles T C, et al. An opticalfrequency synthesizer using integrated photonics[J]. Nature,2018, 557: 81-85.

    [6] [6] Tetsumoto T, Nagatsuma T, Fermann M E, et al. Optically referenced 300 GHz millimetre-wave oscillator[J]. Nature Photon., 2021, 15: 516-522.

    [7] [7] Newman Z, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica,2019, 6(5): 680-685.

    [8] [8] Geng Y, Xiao Y L, Bai Q S, et al. Wavelength-division multiplexing communications using integrated soliton microcomb laser source[J]. Opt. Lett., 2022, 47(23): 6129-6132.

    [9] [9] Geng Y, Zhou H, Han X, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs[J]. Nature Commun., 2022, 13: 1070.

    [10] [10] Geng Y, Han X J, Zhang X X, et al. Phase noise of Kerr soliton dual microcombs[J]. Opt. Lett., 2022, 47(18):4838-4841.

    [11] [11] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887.

    [12] [12] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J].Science, 2018, 359(6378): 887-891.

    [13] [13] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb[J]. Nature Photon., 2019, 13:31-35.

    [14] [14] Suh M G, Yi X, Lai Y H, et al. Searching for exoplanets using a microresonator astrocomb[J]. Nature Photon.,2019, 13: 25-30.

    [15] [15] Spencer D T, Bauters J F, Heck M J R, et al. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime[J]. Optica, 2014, 1(3): 153-157.

    [16] [16] Geng Y, Xiao Y L, Han X J, et al. Polarization multiplexed dissipative Kerr solitons in an on-chip micro-resonator[J].Opt. Lett., 2022, 47(15): 3644-3647.

    [17] [17] Liu J, Huang G, Wang R N, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Commun., 2021, 12:2236.

    [18] [18] Ciminelli C, Dell’Olio F, Armenise M N, et al. High performance InP ring resonator for new generation monolithically integrated optical gyroscopes [J]. Opt.Express, 2013, 21(1): 556-564.

    [19] [19] Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Commun., 2020, 11: 1331.

    [20] [20] Gong Z, Bruch A, Shen M, et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators[J]. Opt.Lett., 2018, 43(18): 4366-4369.

    [21] [21] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537.

    [22] [22] Wilson D J, Schneider K, H?nl S, et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photon., 2020,14: 57-62.

    [23] [23] Xu X, Tan M, Wu J, et al. High performance RF filters via bandwidth scaling with Kerr micro-combs[J]. APL Photon.,2019, 4(2): 026102.

    [24] [24] Ji X R, Liu J Q, He J J, et al. Compact, spatial-modeinteraction-free, ultralow-loss, nonlinear photonic integrated circuits [C]// 2022 European Conference on Optical Communication, 2022: 1-4.

    [25] [25] Moss D J, Morandotti R, Gaeta A L, et al. New CMOS compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature Photon., 2013, 7: 597-607.

    [26] [26] Yang K Y, Oh D Y, Lee S H, et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photon., 2018, 12:297-302.

    [27] [27] Zhang L, Jie L L, Zhang M, et al. Ultrahigh-Q silicon racetrack resonators[J]. Photon. Res., 2020, 8: 684-689.

    [28] [28] Okawachi Y, Lamont M R E, Luke K, et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering[J]. Opt. Lett., 2014, 39(12): 3535-3538.

    [29] [29] Ji X C, Jang J K, Dave U D, et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs[J].Laser Photon. Rev., 2021, 15(1): 2000353.

    [30] [30] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photon., 2020, 14: 486-491.

    [31] [31] Zhang M, Buscaino B, Wang C, et al. Broadband electrooptic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377.

    [32] [32] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photon., 2012, 6: 480-487.

    [33] [33] Johnson A R, Okawachi Y, Levy J S, et al. Chip-based frequency combs with sub-100GHz repetition rates[J]. Opt.Lett., 2012, 37(5): 875-877.

    [34] [34] Kim S, Han K, Wang C, et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators[J]. Nature Commun., 2017, 8: 372.

    [35] [35] Chen T, Lee H, Li J, et al. A general design algorithm for low optical loss adiabatic connections in waveguides[J]. Opt.Express, 2012, 20(20): 22819-22829.

    [36] [36] Lee H, Chen T, Li J, et al. Ultra-low-loss optical delay line on a silicon chip[J]. Nature Commun., 2012, 3: 867

    [37] [37] Jiang X, Wu H, Dai D. Low-loss and low-crosstalk multimode waveguide bend on silicon[J]. Opt. Express,2018, 26(13): 17680-17689.

    [38] [38] Morrison B, Bedoya A C, Ren G, et al. Compact Brillouin devices through hybrid integration on silicon[J]. Optica,2017, 4(8): 847-854.

    [39] [39] Vogelbacher F, Nevlacsil S, Sagmeister M, et al. Analysis of silicon nitride partial euler waveguide bends[J]. Opt.Express, 2019, 27(22): 31394-31406.

    [40] [40] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliaryassisted microcavities[J]. Light: Sci. and Appl., 2019, 8:50.

    [41] [41] Zhang S Y, Silver J M, Bino L D, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 2019, 6(2): 206-212.

    Tools

    Get Citation

    Copy Citation Text

    DU Runchang. Single Soliton Microcomb Based on High-Q On-Chip Si3N4 Optical Microresonators[J]. Semiconductor Optoelectronics, 2024, 45(2): 211

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 14, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.202311140

    Topics