Spectroscopy and Spectral Analysis, Volume. 42, Issue 4, 1270(2022)
Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder Network
Fig. 1. Comparing 2D convolution operation (a) and 3D convolution operation (b)
Fig. 4. Results of San Diego datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
Fig. 5. Results of Los Angeles datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
Fig. 6. Results of Pavia datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
|
|
|
Get Citation
Copy Citation Text
Sheng-ming WANG, Tao WANG, Sheng-jin TANG, Yan-zhao SU. Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1270
Category: Research Articles
Received: Mar. 13, 2021
Accepted: --
Published Online: Jul. 25, 2023
The Author Email: WANG Sheng-ming (210279598@qq.com)