Optics and Precision Engineering, Volume. 32, Issue 10, 1567(2024)
Infrared image and visible image fusion algorithm based on secondary image decomposition
[1] J Y MA, Y MA, C LI. Infrared and visible image fusion methods and applications: a survey. Information Fusion, 45, 153-178(2019).
[2] S T LI, B YANG, J W HU. Performance comparison of different multi-resolution transforms for image fusion. Information Fusion, 12, 74-84(2011).
[3] J J ZONG, T QIU. Medical image fusion based on sparse representation of classified image patches. Biomed Signal Process Control, 34, 195-205(2017).
[4] U PATIL, U MUDENGUDI. Image fusion using hierarchical PCA, 1-6(2011).
[5] X Y ZHANG, Y MA, F FAN et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 34, 1400-1410(2017).
[6] H LI, X J WU. DenseFuse: a fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 2614-2623(2018).
[7] H LI, X J WU, T DURRANI. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Transactions on Instrumentation and Measurement, 69, 9645-9656(2020).
[8] H LI, X J WU, J KITTLER. RFN-Nest: an end-to-end residual fusion network for infrared and visible images. Information Fusion, 73, 72-86(2021).
[9] Y ZHANG, Y LIU, P SUN et al. IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 54, 99-118(2020).
[10] H ZHANG, J Y MA. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. International Journal of Computer Vision, 129, 2761-2785(2021).
[11] J Y LIU, Y H WU, Z B HUANG et al. SMoA: searching a modality-oriented architecture for infrared and visible image fusion. IEEE Signal Processing Letters, 28, 1818-1822(2021).
[12] H LI, T Y XU, X J WU et al. LRRNet: a novel representation learning guided fusion network for infrared and visible images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 11040-11052(2023).
[13] J Y MA, L F TANG, M L XU et al. STDFusionNet: an infrared and visible image fusion network based on salient target detection. IEEE Transactions on Instrumentation and Measurement, 70, 5009513(2021).
[14] C REN, X H HE, C C WANG et al. Adaptive consistency prior based deep network for image denoising, 8592-8602(2021).
[15] DP KINGMA, J BA. Adam: A method for stochastic optimization, 1-15(2015).
[16] A TOET, MA HOGERVORST. Progress in color night vision. Optical Engineering, 51(2012).
[17] H XU, J Y MA, J J JIANG et al. U2Fusion: a unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).
[18] J Y MA, C CHEN, C LI et al. Infrared and visible image fusion via gradient transfer and total variation minimization. Information Fusion, 31, 100-109(2016).
[19] Y FU, X J WU. A dual-branch network for infrared and visible image fusion, 10675-10680(2021).
Get Citation
Copy Citation Text
Xin MA, Chunyu YU, Yixin TONG, Jun ZHANG. Infrared image and visible image fusion algorithm based on secondary image decomposition[J]. Optics and Precision Engineering, 2024, 32(10): 1567
Category:
Received: Sep. 26, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: YU Chunyu (yucy@njupt.edu.cn)