Optics and Precision Engineering, Volume. 32, Issue 10, 1567(2024)
Infrared image and visible image fusion algorithm based on secondary image decomposition
[1] MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 45, 153-178(2019).
[2] LI S T, YANG B, HU J W. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 12, 74-84(2011).
[3] ZONG J J, QIU T. Medical image fusion based on sparse representation of classified image patches[J]. Biomed Signal Process Control, 34, 195-205(2017).
[4] PATIL U, MUDENGUDI U. Image fusion using hierarchical PCA[C], 1-6(2011).
[5] ZHANG X Y, MA Y, FAN F et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 34, 1400-1410(2017).
[6] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2614-2623(2018).
[7] LI H, WU X J, DURRANI T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 69, 9645-9656(2020).
[8] LI H, WU X J, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 73, 72-86(2021).
[9] ZHANG Y, LIU Y, SUN P et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).
[10] ZHANG H, MA J Y. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 129, 2761-2785(2021).
[11] LIU J Y, WU Y H, HUANG Z B et al. SMoA: searching a modality-oriented architecture for infrared and visible image fusion[J]. IEEE Signal Processing Letters, 28, 1818-1822(2021).
[12] LI H, XU T Y, WU X J et al. LRRNet: a novel representation learning guided fusion network for infrared and visible images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 11040-11052(2023).
[13] MA J Y, TANG L F, XU M L et al. STDFusionNet: an infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5009513(2021).
[14] REN C, HE X H, WANG C C et al. Adaptive consistency prior based deep network for image denoising[C], 8592-8602(2021).
[15] KINGMA DP, BA J. Adam: A method for stochastic optimization[C], 1-15(2015).
[16] TOET A, HOGERVORST MA. Progress in color night vision[J]. Optical Engineering, 51(2012).
[17] XU H, MA J Y, JIANG J J et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).
[18] MA J Y, CHEN C, LI C et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).
[19] FU Y, WU X J. A dual-branch network for infrared and visible image fusion[C], 10675-10680(2021).
Get Citation
Copy Citation Text
Xin MA, Chunyu YU, Yixin TONG, Jun ZHANG. Infrared image and visible image fusion algorithm based on secondary image decomposition[J]. Optics and Precision Engineering, 2024, 32(10): 1567
Category:
Received: Sep. 26, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: Chunyu YU (yucy@njupt.edu.cn)