Optics and Precision Engineering, Volume. 31, Issue 14, 2135(2023)
Image reconstruction based on deep compressive sensing combined with global and local features
[1] C E SHANNON. Communication in the presence of noise. Proceedings of the IRE, 37, 10-21(1949).
[2] E J CANDÈS, M B WAKIN, S P BOYD. Enhancing sparsity by reweighted
[3] D L DONOHO. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[4] R BARANIUK, E CANDES, R NOWAK et al. Compressive sampling. IEEE Signal Processing Magazine, 25, 12-13(2008).
[5] W Z SHI, S H LIU, F JIANG et al. Video compressed sensing using a convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology, 31, 425-438(2021).
[6] C A ROGERS, D C POPESCU. Compressed sensing MIMO radar system for extended target detection. IEEE Systems Journal, 15, 1381-1389(2021).
[7] [7] 7黄博, 周劼, 江舸. 稳健型双层叠组LASSO逆合成孔径雷达高分辨成像算法[J]. 电子与信息学报, 2021, 43(3): 674-682. doi: 10.11999/JEIT200338HUANGB, ZHOUJ, JIANGG. High resolution ISAR imaging algorithm based on robust two-tier group LASSO alternating direction method of multipliers[J]. Journal of Electronics & Information Technology, 2021, 43(3): 674-682.(in Chinese). doi: 10.11999/JEIT200338
[8] P A KUMAR, R GUNASUNDARI, R AARTHI. Systematic analysis and review of magnetic resonance imaging (MRI) reconstruction techniques. Current Medical Imaging Formerly Current Medical Imaging Reviews, 17, 943-955(2021).
[9] W Z SHI, F JIANG, S H LIU et al. Image compressed sensing using convolutional neural network. IEEE Transactions on Image Processing, 29, 375-388(2020).
[10] S G MALLAT, Z F ZHANG. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415(1993).
[11] J A TROPP, A C GILBERT. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[12] M FORNASIER, H RAUHUT. Iterative thresholding algorithms. Applied and Computational Harmonic Analysis, 25, 187-208(2008).
[13] A BECK, M TEBOULLE. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2, 183-202(2009).
[14] S J WRIGHT, R D NOWAK, M A T FIGUEIREDO. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57, 2479-2493(2009).
[15] M A T FIGUEIREDO, R D NOWAK, S J WRIGHT. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).
[16] J E FOWLER. Block Compressed Sensing of Images Using Directional Transforms, 547(24).
[17] [17] 17景宁, 姚鼎一, 王志斌, 等. 等效时间采样压缩感知高频信号重建[J]. 光学 精密工程, 2022, 30(10):1240-1245. doi: 10.37188/OPE.20223010.1240JINGN, YAOD Y, WANGZ B, et al. High frequency signal reconstruction based on compressive sensing and equivalent-time sampling[J]. Opt. Precision Eng., 2022, 30(10)1240-1245.(in Chinese). doi: 10.37188/OPE.20223010.1240
[18] K KULKARNI, S LOHIT, P TURAGA et al. ReconNet: Non-Iterative Reconstruction of Images From Compressively Sensed Measurements, 449-458(27).
[19] W Z SHI, F JIANG, S P ZHANG et al. Deep Networks for Compressed Image Sensing, 877-882(10).
[20] W Z SHI, F JIANG, S H LIU et al. Scalable Convolutional Neural Network for Image Compressed Sensing, 12282-12291(15).
[21] Y YANG, J SUN, H B LI et al. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 521-538(2020).
[22] J ZHANG, C ZHAO, W GAO. Optimization-inspired compact deep compressive sensing. IEEE Journal of Selected Topics in Signal Processing, 14, 765-774(2020).
[23] C CHEN, E W TRAMEL, J E FOWLER. Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions, 1193-1198(6).
[24] J ZHANG, B GHANEM. ISTA-net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing, 1828-1837(18).
[25] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).
[26] K M HE, X Y ZHANG, S Q REN et al. Deep Residual Learning for Image Recognition, 770-778(27).
[27] L CHI, B JIANG, Y MU. Fast fourier convolution. Advances in Neural Information Processing Systems, 33, 4479-4488(2020).
[28] S M SEITZ, S BAKER. Filter Flow, 143-150(2009).
[29] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, 1874-1883(27).
[30] J C YANG, J WRIGHT, T S HUANG et al. Image super-resolution via sparse representation. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 19, 2861-2873(2010).
[31] M BEVILACQUA, A ROUMY, C GUILLEMOT et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding(2012).
[32] L BO, H C LU, Y J LU et al. FompNet: Compressive Sensing Reconstruction with Deep Learning over Wireless Fading Channels, 1-6(11).
[33] D MARTIN, C FOWLKES et al. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, 416-423(14).
[34] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
Get Citation
Copy Citation Text
Yuanhong ZHONG, Qianfeng XU, Yujie ZHOU, Shanshan WANG. Image reconstruction based on deep compressive sensing combined with global and local features[J]. Optics and Precision Engineering, 2023, 31(14): 2135
Category: Information Sciences
Received: Dec. 6, 2022
Accepted: --
Published Online: Aug. 2, 2023
The Author Email: ZHONG Yuanhong (zhongyh@cqu.edu.cn)