Laser & Optoelectronics Progress, Volume. 58, Issue 7, 0723003(2021)

Two Processing Methods of Graphene in Finite Element Calculation

Yongzhe Zhao1, Da Teng1、*, Yuncheng Wang1, and Kai Wang2、**
Author Affiliations
  • 1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou , Henan 450044, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    References(45)

    [1] Castro N A H, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109(2009).

    [2] Novoselov K S, Morozov S V, Mohinddin T M G et al. Electronic properties of graphene[J]. Physica Status Solidi (b), 244, 4106-4111(2007).

    [3] Sadowski M L, Martinez G, Potemski M et al. Landau level spectroscopy of ultrathin graphite layers[J]. Physical Review Letters, 97, 266405(2006).

    [4] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 438, 201-204(2005).

    [5] Jiang Z, Zhang Y, Tan Y W et al. Quantum Hall effect in graphene[J]. Solid State Communications, 143, 14-19(2007).

    [6] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [7] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [8] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [9] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 8, 323-327(2008).

    [10] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [11] Zhong Y J, Zhu H W. Structure, properties and potential applications of graphene[J]. Physics, 47, 704-714(2018).

    [12] Yang L, Duan Z Y, Ma L H et al. Surface plasmon polariton nanolasers[J]. Laser & Optoelectronics Progress, 56, 202409(2019).

    [13] Teng D, Wang K, Huan Q S et al. High-performance light transmission based on graphene plasmonic waveguides[J]. Journal of Materials Chemistry C, 8, 6832-6838(2020).

    [14] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [15] Zhao C X, Qie Y, Yu Y et al. Enhanced optical absorption of graphene by plasmon[J]. Acta Physica Sinica, 69, 067801(2020).

    [16] He X Y, Gao P Q, Shi W Z. A further comparison of graphene and thin metal layers for plasmonics[J]. Nanoscale, 8, 10388-10397(2016).

    [17] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014).

    [18] Wei Z Z, Xue W R, Peng Y L et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires[J]. Acta Optica Sinica, 39, 0124001(2019).

    [19] Ma T, Yuan J H, Wang F et al. Graphene-coated two-layer dielectric loaded surface plasmon polariton rib waveguide with ultra-long propagation length and ultra-high electro-optic wavelength tuning[J]. IEEE Access, 8, 103433-103442(2020).

    [20] Xu W, Zhu Z H, Liu K et al. Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide[J]. Optics Letters, 40, 1603-1606(2015).

    [21] Li Y, Zhang H F, Wu Q et al. Theoretical analysis of single dielectric loaded two-sheet graphene symmetric surface plasmon waveguide[J]. Laser & Optoelectronics Progress, 56, 202413(2019).

    [22] Dai Y Y, Zhu X L, Mortensen N A et al. Nanofocusing in a tapered graphene plasmonic waveguide[J]. Journal of Optics, 17, 065002(2015).

    [23] He X Q, Ning T G, Lu S H et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Optics Express, 26, 10109-10118(2018).

    [24] Zhou X T, Zhang T, Chen L et al. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement[J]. Journal of Lightwave Technology, 32, 3597-3601(2014).

    [25] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Optics Letters, 42, 2078-2081(2017).

    [26] Yu P C, Fesenko V I, Tuz V R. Dispersion features of complex waves in a graphene-coated semiconductor nanowire[J]. Nanophotonics, 7, 925-934(2018).

    [27] Teng D, Wang Y C, Guo J K et al. Study on modal properties of graphene-coated elliptical nanowire pairs[J]. Laser & Optoelectronics Progress, 57, 232303(2020).

    [28] Teng D, Ma W S, Yang Y D et al. Study on subwavelength transmission properties of triangular-shaped graphene-coated nanowires on substrate[J]. Acta Optica Sinica, 40, 1324002(2020).

    [29] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves[J]. Acta Optica Sinica, 40, 0623002(2020).

    [30] Gao Y X, Shadrivov I V. Nonlinear coupling in graphene-coated nanowires[J]. Scientific Reports, 6, 38924(2016).

    [31] Teng D, Wang K, Li Z. Graphene-coated nanowire waveguides and their applications[J]. Nanomaterials, 10, 229(2020).

    [32] Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 38, 0124001(2018).

    [33] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [34] Guo J S, Li J, Liu C Y et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Light: Science & Applications, 9, 29(2020).

    [35] Ono M, Hata M, Tsunekawa M et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides[J]. Nature Photonics, 14, 37-43(2020).

    [36] Gubin M Y, Leksin A Y, Shesterikov A V et al. Nonlinear plasmonic switching in graphene-based stub nanoresonator loaded with core-shell nanowire[J]. Applied Surface Science, 506, 144814(2020).

    [37] Hu X, Wang J. Ultrabroadband compact graphene-silicon TM-pass polarizer[J]. IEEE Photonics Journal, 9, 7101310(2017).

    [38] Bao Q L, Zhang H, Wang B et al. Broadband graphene polarizer[J]. Nature Photonics, 5, 411-415(2011).

    [39] Liu J P, Wang W L, Xie F et al. Efficient directional coupling from multilayer-graphene-based long-range SPP waveguide to metal-based hybrid SPP waveguide in mid-infrared range[J]. Optics Express, 26, 29509-29520(2018).

    [40] Ye L F, Sui K H, Feng H. High-efficiency couplers for graphene surface plasmon polaritons in the mid-infrared region[J]. Optics Letters, 45, 264-267(2020).

    [41] Francescato Y, Giannini V, Maier S A. Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon[J]. New Journal of Physics, 15, 063020(2013).

    [42] Teng D, Cao Q, Li S et al. Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides[J]. Journal of the Optical Society of America A, 31, 268-273(2014).

    [43] Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009).

    [44] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate[J]. Journal of the Optical Society of America B, 33, 2560-2565(2016).

    [45] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010).

    Tools

    Get Citation

    Copy Citation Text

    Yongzhe Zhao, Da Teng, Yuncheng Wang, Kai Wang. Two Processing Methods of Graphene in Finite Element Calculation[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0723003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Aug. 28, 2020

    Accepted: Sep. 8, 2020

    Published Online: Apr. 25, 2021

    The Author Email: Teng Da (tengda@zznu.edu.cn), Wang Kai (wangkai@mail.sitp.ac.cn)

    DOI:10.3788/LOP202158.0723003

    Topics