Laser & Optoelectronics Progress, Volume. 48, Issue 11, 111402(2011)

Progress of Mid-Infrared Fiber Lasers

Chen Hao*, Li Jianfeng, Ou Zhonghua, Yang Yi, Chen Ming, Luo Hongyu, Wei Tao, and Liu Yongzhi
Author Affiliations
  • [in Chinese]
  • show less
    References(37)

    [1] [1] J. S. Sanghera, L. B. Shaw, L.E. Busse et al.. Infrared optical fibers and their applications[C]. SPIE, 1999, 3849: 38~49

    [2] [2] M. Pollnau, S. D. Jackson. Advances in Mid-Infrared Fiber Lasers. In: Mid-Infrared Coherent Sources and Applications. The NATO Science for Peace and Security Programme, Series B: Physics and Biophysics[M]. Berlin: Springer, 2008. 315~346

    [3] [3] P. W. France, M. G. Drexhage, J. M. Parker et al.. Fluoride Glass Optical Fibres[M]. Glasgow: Blackie, 1990

    [4] [4] L. B. Shaw, B. Cole, P. A. Thielen et al.. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber[J]. IEEE J. Quantum Electron., 2001, 37(9): 1127~1137

    [5] [5] Y. D. Huang, M. Mortier, F. Auzel. Stark level analysis for Er3+-doped ZBLAN glass[J]. Opt. Mater., 2001, 17(4): 501~511

    [6] [6] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Opt. Lett., 2004, 29(4): 334~336

    [7] [7] D. Faucher, M. Bernier, N. Caron et al.. Erbium-doped all-fiber laser at 2.94 μm[J]. Opt. Lett., 2009, 34(21): 3313~3315

    [8] [8] S. D. Jackson. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Opt. Lett., 2009, 34(15): 2327~2329

    [9] [9] I. D. Aggarwal, L. B. Shaw, J. S. Sanghera. Chalcogenide glass fiber-based mid-IR sources and applications[C]. SPIE, 2007, 6453: 645312

    [10] [10] D. C. Hanna, I. M. Jauncey, R. M. Percival et al.. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electron. Lett., 1988, 24(19): 1222~1223

    [11] [11] W. L. Barnes, J. E. Townsend. Highly tunable and efficient diode pumpe doperation of Tm3+ doped fibre lasers[J]. Electron. Lett., 1990, 26(11): 746~747

    [12] [12] J. N. Carter, R.G. Smart, D.C. Hanna et al.. CW diode-pumpe doperation of 1.97 μm thulium-doped fluorozirconate fibre laser[J]. Electron. Lett., 1990, 26(9): 599~601

    [13] [13] T. Y. Fan, G. Huber, R. L. Byer et al.. Spectroscopy and diodelaser-pumped operation of Tm, HoYAG[J]. IEEE J. Quantum Electron., 1988, 24(6): 924~933

    [14] [14] J. Y. Allain, M. Monerie, H. Poignant. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre[J]. Electron. Lett., 1989, 25(24): 1660~1662

    [15] [15] R. M. Percival, D. Szebesta, S. T. Davey. Highly efficient CW cascade operation of 1.47 and 1.82 μm transitions in Tm doped fluoride fibre laser[J]. Electron. Lett., 1992, 28(20): 1866~1868

    [16] [16] M. Eichhorn, S. D. Jackson. Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers[J]. Appl. Phys. B, 2008, 90(1): 35~41

    [17] [17] J. K. Tyminski, D. M. Franich, M. Kokta. Gain dynamics of TmHoYAG pumped in near infrared[J]. J. Appl. Phys., 1989, 65(8): 3181~3188

    [18] [18] V. A. French, R. R. Petrin, R. C. Powell et al.. Energy-transfer processes in Y3Al5O12Tm, Ho[J]. Phys. Rev. B, 1992, 46(13): 8018~8026

    [19] [19] M. C. Brierley, P. W. France, C. A. Millar. Lasing at 2.08 μm and 1.38 μm in a holmium doped fluorozirconate fiber laser[J]. Electron. Lett., 1988, 24(9): 539~540

    [20] [20] S. D. Jackson. 8.8 W diode-cladding-pumped Tm3+, Ho3+ doped fluoride fibre laser[J]. Electron. Lett., 2001, 37(13): 821~822

    [21] [21] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Opt. Lett., 2004, 29(4): 334~336

    [22] [22] S. D. Jackson. High-power and highly efficient diode-cladding pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Opt. Lett., 2009, 34(15): 2327~2329

    [23] [23] M. Pollnau, Ch. Ghisler, W. Lüthy et al.. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm[J]. Opt. Lett., 1997, 22(9): 612~614

    [24] [24] J. Y. Allain, M. Monerie, H. Poignant. Erbium doped fluorozirconate single-mode fibre lasing at 2.71 μm[J]. Electron. Lett., 1989, 25(1): 28~29

    [25] [25] Toebben. CW lasing at 3.45 μm in erbium-doped fluorozirconate fibres[J]. Frequenz, 1991, 45(9-10): 250~252

    [26] [26] Xiushan Zhu, Ravi Jain. Compact 2 W wavelength-tunable ErZBLAN mid-infrared fiber laser[J]. Opt. Lett., 2007, 32(16): 2381~2383

    [27] [27] Shigeki Tokita, Masanao Murakami,Seiji Shimizu et al.. Liquid-cooled 24 W mid-infrared ErZBLAN fiber laser[J]. Opt. Lett., 2009, 34(20): 3062~3064

    [28] [28] Martin Bernier, Dominic Faucher, Nicolas Caron et al.. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Opt. Express, 2009, 17(9): 16941~16946

    [29] [29] Dominic Faucher, Martin Bernier, Guillaume Androz et al.. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Opt. Lett., 2011, 36(7): 1104~1106

    [30] [30] S. D. Jackson, Terence A. King, Markus Pollnau. Diode-pumped 1.7 W erbium 3 μm fiber laser[J]. Opt. Lett., 1999, 24(16): 1133~1135

    [31] [31] Xiushan Zhu, Ravi Jain. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Appl. Opt., 2006, 45(27): 7118~7125

    [32] [32] S. D. Jackson. High-power erbium cascade fibre laser[J]. Electron. Lett., 2009, 45(16): 830~832

    [33] [33] S. D. Jackson, Markus Pollnau, Jianfeng Li. Diode pumped erbium cascade fibre lasers[J]. IEEE J. Quantum Electron., 2011, 47(4): 471~478

    [34] [34] O. P. Kulkarni, C. Xia, D. J. Lee et al.. Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient[J]. Opt. Express, 2006, 14(17): 7924~7930

    [35] [35] P. A. Thielen, L. B. Shaw, J. S. Sanghera et al.. Modeling of a mid-IR chalcogenide fiber Raman laser [J]. Opt. Express, 2003, 11(24): 3248~3253

    [36] [36] S. D. Jackson, Gilberto Anzueto-Sánchez. Chalcogenide glass Raman fiber laser[J]. Appl. Phys. Lett., 2006, 88(22): 221106

    [37] [37] Jianfeng Li, Yu Chen, Ming Chen et al.. Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser[J]. Opt. Commun., 2010, 284(5): 1278~1283

    CLP Journals

    [1] Shen Yanlong, Huang Ke, Zhou Songqing, Luan Kunpeng, Zhu Feng, Chen Hongwei, Yu Li, Yi Aiping, Feng Guobin, Ye Xisheng. 10 W-Level High Efficiency Single-Mode Mid-Infrared 2.8 μm Fiber Laser[J]. Chinese Journal of Lasers, 2015, 42(5): 502008

    [2] Ye Bin, Dai Shixun, Liu Zijun, Jiao Qing, Xu Yinsheng, Wang Xunsi, Shen Xiang, Nie Qiuhua. Research Progress of Er3+: ZBLAN Fiber Laser Operating at 2.7 μm[J]. Laser & Optoelectronics Progress, 2015, 52(9): 90004

    [3] Shen Yanlong, Zhou Songqing, Chen Hongwei, Huang Ke, Luan Kunpeng, Tao Mengmeng, Yu Li, Yi Aiping, Feng Guobin. Output Characteristics of Q-Switched Mid-Infrared Fiber Laser with a Mechanical Chopper[J]. Acta Optica Sinica, 2016, 36(1): 114002

    [4] Guo Jianjun, Guo Banghong, Cheng Guangming, Xie Liangwen, Liao Changjun, Liu Songhao. Research Progress on Photon Orbital Angular Momentum in Quantum Communication Applications[J]. Laser & Optoelectronics Progress, 2012, 49(8): 80003

    [5] Jiang Meng, Feng Qiaoling, Wei Yufeng, Wang Congying, Liang Tongli. Recent Advance in Miniaturization of Photo-Acoustic Spectroscopy Gas Sensor[J]. Laser & Optoelectronics Progress, 2015, 52(2): 20006

    Tools

    Get Citation

    Copy Citation Text

    Chen Hao, Li Jianfeng, Ou Zhonghua, Yang Yi, Chen Ming, Luo Hongyu, Wei Tao, Liu Yongzhi. Progress of Mid-Infrared Fiber Lasers[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111402

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 16, 2011

    Accepted: --

    Published Online: Sep. 30, 2011

    The Author Email: Hao Chen (chenh0909@hotmail.com)

    DOI:10.3788/lop48.111402

    Topics