Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 2040(2024)

Preparation of Multifunctional Ni/Zn/NC@rGO Nanocomposites and Study on Their Anticorrosive and Electromagnetic Wave Absorption Performance

LI Ying1...2, LIU Jiaxin1, WANG Sijia1, DONG Chunlei1, CHEN Zhichun3,4, ZHANG Peng1,2,*, LEI Dongyi1,2, WANG Wenjia1, GENG Guoying1 and WANG Kexin1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(66)

    [1] [1] WANG Yifan, ZHU Lin, HAN Lu, et al. Acta Mater Compos Sin, 2023, 40(1): 1-12.

    [2] [2] WU Zhihong, MENG Zhenzhen, DENG Yue, et al. J Chin Ceram Soc, 2021, 49(6): 1125-1134.

    [3] [3] ZHANG Xiuzhi, ZHENG Peiqi, TAO Wenhong, et al. J Chin Ceram Soc, 2023, 51(5): 1363-1372.

    [4] [4] WU Zhihong, YAO Cheng, MENG Zhenzhen, et al. J Chin Ceram Soc, 2022, 50(7): 2056-2066.

    [5] [5] WANG Y, GAO X, WU X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber[J]. Chem Eng J, 2019, 375: 121942.

    [6] [6] CAO Y H, ZHENG D J, LUO J S, et al. Enhanced corrosion protection by Al surface immobilization of in situ grown layered double hydroxide films co-intercalated with inhibitors and low surface energy species[J]. Corros Sci, 2020, 164: 108340.

    [7] [7] HUANG X G, ZHANG J, LAI M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. J Alloys Compd, 2015, 627: 367-373.

    [8] [8] CHEN J C, LEI W W, HUANG C, et al. Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption[J]. J Alloys Compd, 2022, 927: 167104.

    [9] [9] WANG Y C, WANG W L, SUN J, et al. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance[J]. Carbon, 2018, 135: 1-11.

    [10] [10] LIU Qi, DAI Jingxiong, HU Fei, et al. J Chin Ceram Soc, 2021, 49(10): 2211-2220.

    [11] [11] LIANG L L, LIU Z, XIE L J, et al. Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents[J]. Carbon, 2021, 171: 142-153.

    [12] [12] LI S Z, MA L, LEI Z X, et al. Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion[J]. Carbon, 2022, 186: 520-529.

    [13] [13] YE W C, FU J J, WANG Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. J Magn Magn Mater, 2015, 395: 147-151.

    [14] [14] XU X F, SHI S H, TANG Y L, et al. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application[J]. Adv Sci, 2021, 8(5): 2002658.

    [15] [15] CHEN T, QIU J H, ZHU K J, et al. Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites[J]. J Mater Sci Mater Electron, 2014, 25(9): 3664-3673.

    [16] [16] YANG Z H, ZHANG Y, LI M, et al. Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption[J]. ACS Appl Nano Mater, 2019, 2(12): 7888-7897.

    [17] [17] YAN J, HUANG Y, YAN Y H, et al. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres[J]. ACS Appl Mater Interfaces, 2019, 11(43): 40781-40792.

    [18] [18] Lü Y Y, WANG Y T, LI H L, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13604-13611.

    [19] [19] WU F, WAN L Y, LI Q Y, et al. Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption[J]. Compos Part B Eng, 2022, 236: 109839.

    [20] [20] CHENG R R, WANG Y, DI X C, et al. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions[J]. J Mater Sci Technol, 2022, 129: 15-26.

    [21] [21] SHEN Z J, YANG H L, LIU C B, et al. Polymetallic MOF-derived corn-like composites for magnetic-dielectric balance to facilitate broadband electromagnetic wave absorption[J]. Carbon, 2021, 185: 464-476.

    [22] [22] DENG Y Y, WU Y N, CHEN G Q, et al. Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation[J]. Chem Eng J, 2021, 405: 127004.

    [23] [23] PAN K W, LENG T, SONG J, et al. Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption[J]. Carbon, 2020, 160: 307-316.

    [24] [24] ZHANG Y C, GAO S T, XING H L, et al. In situ carbon nanotubes encapsulated metal Nickel as high-performance microwave absorber from Ni-Zn Metal-Organic framework derivative[J]. J Alloys Compd, 2019, 801: 609-618.

    [25] [25] WANG Y Q, WANG H G, YE J H, et al. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption[J]. Chem Eng J, 2020, 383: 123096.

    [26] [26] FENG J, PU F Z, LI Z X, et al. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber[J]. Carbon, 2016, 104: 214-225.

    [27] [27] YU Y, BEI H Z, WU L, et al. A facile dissolution-precipitation strategy for the preparation of PrGO-Ni@NC with enhanced electromagnetic wave adsorption at ultralow filler loading[J]. Compos Commun, 2023, 38: 101470.

    [28] [28] MAO H N, WANG X G. Use of in situ polymerization in the preparation of graphene/polymer nanocomposites[J]. N Carbon Mater, 2020, 35(4): 336-343.

    [29] [29] ZHOU Lang, WANG Tao. Acta Mater Compos Sin, 2020, 37(5): 997-1014.

    [30] [30] MA C C, WANG W, WANG Q, et al. Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance[J]. J Colloid Interface Sci, 2021, 594: 604-620.

    [31] [31] GE J W, CUI Y, LIU L, et al. The fabrication of FeMnO/RGO as anticorrosive microwave absorbent toward marine environment[J]. Synth Met, 2021, 282: 116933.

    [32] [32] MENG R, ZHANG T L, LIU X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance[J]. Carbon, 2021, 185: 186-197.

    [33] [33] ZHAO H T, WANG Q J, MA H L, et al. Hollow spherical NiFe-MOF derivative and N-doped rGO composites towards the tunable wideband electromagnetic wave absorption: experimental and theoretical study[J]. Carbon, 2023, 201: 347-361.

    [34] [34] LIU D W, DU Y C, XU P, et al. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption[J]. J Mater Chem A, 2021, 9(8): 5086-5096.

    [35] [35] LIU R T, LI T T, XU J, et al. Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference[J]. Carbohydr Polym, 2021, 260: 117840.

    [36] [36] FENG W, WANG Y M, CHEN J C, et al. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties[J]. J Mater Chem C, 2018, 6(1): 10-18.

    [37] [37] ZHANG H X, JIA Z R, FENG A L, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Compos Part B Eng, 2020, 199: 108261.

    [38] [38] WU Q, WANG B L, FU Y G, et al. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption[J]. Chem Eng J, 2021, 410: 128378.

    [39] [39] LIANG J, CHEN J, SHEN H Q, et al. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption[J]. Chem Mater, 2021, 33(5): 1789-1798.

    [40] [40] WANG S S, XU Y C, FU R R, et al. Rational construction of hierarchically porous Fe-co/N-doped carbon/rGO composites for broadband microwave absorption[J]. Nanomicro Lett, 2019, 11(1): 76.

    [41] [41] LI G F, XIE G Q, GONG C, et al. Hydrogenassisted synthesis of Ni-ZIFderived nickel nanoparticle chains coated with nitrogendoped graphitic carbon layers as efficient electrocatalysts for nonenzymatic glucose detection[J]. Microchim Acta, 2022, 189(2): 80.

    [42] [42] WEN P, GONG P W, SUN J F, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. J Mater Chem A, 2015, 3(26): 13874-13883.

    [43] [43] ZHOU Y, ZHOU W J, NI C H, et al. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents[J]. Chem Eng J, 2022, 430: 132621.

    [44] [44] YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chem Eng J, 2018, 352: 510-518.

    [45] [45] CUI Y H, LIU Z H, LI X X, et al. MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: structure control and electromagnetic wave absorption performance[J]. J Colloid Interface Sci, 2021, 600: 99-110.

    [46] [46] LI X H, SHU R W, WU Y, et al. Fabrication of Ni/ZnO/C hollow microspheres decorated graphene composites towards high-efficiency electromagnetic wave absorption in the Ku-band[J]. Ceram Int, 2021, 47(17): 24372-24383.

    [47] [47] CAI Z, MA Y F, ZHAO K, et al. Ti3C2Tx MXene/graphene oxide/Co3O4 nanorods aerogels with tunable and broadband electromagnetic wave absorption[J]. Chem Eng J, 2023, 462: 142042.

    [48] [48] LIAO J, YE M Q, HAN A J, et al. Boosted electromagnetic wave absorption performance from multiple loss mechanisms in flower-like Cu9S5/RGO composites[J]. Carbon, 2021, 177: 115-127.

    [49] [49] WEI B, ZHOU J T, YAO Z J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Appl Surf Sci, 2020, 508: 145261.

    [50] [50] LIU P B, HUANG Y, YAN J, et al. Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption[J]. J Mater Chem C, 2016, 4(26): 6362-6370.

    [51] [51] GUO Y, LIU H, WANG D D, et al. Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber[J]. Nano Res, 2022, 15(8): 6841-6850.

    [52] [52] GAO X S, WANG X, CAI J N, et al. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing[J]. Carbon, 2023, 211: 118083.

    [53] [53] XIA L, ZHANG X Y, YANG Y N, et al. Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium-aluminum- silicate (LAS) composites[J]. J Alloys Compd, 2018, 748: 154-162.

    [54] [54] WANG Y, WU X M, ZHANG W Z, et al. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances[J]. Mater Res Bull, 2018, 98: 59-63.

    [55] [55] XU R X, XU D W, ZENG Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chem Eng J, 2022, 427: 130796.

    [56] [56] LIU P B, ZHANG Y Q, YAN J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chem Eng J, 2019, 368: 285-298.

    [57] [57] CUI Y H, WU F, WANG J Q, et al. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties[J]. Compos Part A Appl Sci Manuf, 2021, 145: 106378.

    [58] [58] XIONG J, XIANG Z, DENG B W, et al. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties[J]. Appl Surf Sci, 2020, 513: 145778.

    [59] [59] WANG Y N, ZHOU Z L, CHEN M J, et al. From nanoscale to macroscale: engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption[J]. Appl Surf Sci, 2018, 439: 176-185.

    [60] [60] LIU P B, GAO S, WANG Y, et al. Core-shell CoNi@Graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Appl Mater Interfaces, 2019, 11(28): 25624-25635.

    [61] [61] ZHAO X X, HUANG Y, YAN J, et al. Excellent electromagnetic wave absorption properties of the ternary composite ZnFe2O4@PANI-rGO optimized by introducing covalent bonds[J]. Compos Sci Technol, 2021, 210: 108801.

    [62] [62] LIU D W, DU Y C, WANG F Y, et al. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption[J]. Carbon, 2020, 157: 478-485.

    [63] [63] WANG Y, DI X C, LU Z, et al. Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption[J]. J Colloid Interface Sci, 2021, 589: 462-471.

    [64] [64] FAN Y, HE Y, LUO P Y, et al. Pulse Current electrodeposition and properties of Ni-W-GO composite coatings[J]. J Electrochem Soc, 2015, 163(3): D68-D73.

    [65] [65] PRASAI D, TUBERQUIA J C, HARL R R, et al. Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102-1108.

    [66] [66] ZHANG F, CUI W, WANG B B, et al. Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities[J]. Compos Part B Eng, 2020, 204: 108491.

    Tools

    Get Citation

    Copy Citation Text

    LI Ying, LIU Jiaxin, WANG Sijia, DONG Chunlei, CHEN Zhichun, ZHANG Peng, LEI Dongyi, WANG Wenjia, GENG Guoying, WANG Kexin. Preparation of Multifunctional Ni/Zn/NC@rGO Nanocomposites and Study on Their Anticorrosive and Electromagnetic Wave Absorption Performance[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2040

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 12, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Peng ZHANG (peng.zhang@qut.edu.cn;)

    DOI:10.14062/j.issn.0454-5648.20230708

    Topics