Optics and Precision Engineering, Volume. 32, Issue 23, 3504(2024)

Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer

Haizhao JING... Lijie TAO and Haokui ZHANG* |Show fewer author(s)
Author Affiliations
  • Northwestern Polytechnical University, Xi’an710129, China
  • show less
    Figures & Tables(12)
    Workflow of 3D-ConvFormer framework
    Operation of 3D-ConvFormer block
    Visualization results of different methods on Indian Pine dataset
    Visualization results of different methods on Pavia University dataset
    Visualization results of different methods on WHU-Hi-LongKou dataset
    Scatter plot of overall accuracy predicted by five methods on three datasets
    • Table 1. Land cover class in Indian Pines dataset

      View table
      View in Article

      Table 1. Land cover class in Indian Pines dataset

      ClassTrain numTest num
      Alfalfa4610
      Corn-notill1 428150
      Corn-mintill830150
      Corn23710
      Grass-pasture483150
      Grass-trees730150
      Grass-pasture-mowed2810
      Hay-windrowed478150
      Oats2010
      Soybean-notill972150
      Soybean-mintill2 455150
      Soybean-clean593150
      Wheat20510
      Woods1 265150
      Buildings-Grass-Trees-Drives386150
      Stone-Steel-Towers9310
      Total10 2491 560
    • Table 2. Land cover class in Pavia University dataset

      View table
      View in Article

      Table 2. Land cover class in Pavia University dataset

      ClassTrain numTest num
      Asphalt6 631150
      Meadows18 649150
      Gravel2 099150
      Trees3 064150
      Painted metal sheets1 345150
      Bare Soil5 029150
      Bitumen1 330150
      Self-Blocking Bricks3 682150
      Shadows947150
      Total42 7761 350
    • Table 3. Land cover class in WHU-Hi-LongKou dataset

      View table
      View in Article

      Table 3. Land cover class in WHU-Hi-LongKou dataset

      ClassTrain numTest num
      Corn34 511150
      Cotton8 374150
      Sesame3 031150
      Broad-leaf soybean63 212150
      Narrow-leaf soybean4 151150
      Rice11 854150
      Water67 056150
      Roads and houses7 124150
      Mixed weed5 229150
      Total204 5421 350
    • Table 4. Comparison of classification results of different methods on Indian Pines dataset

      View table
      View in Article

      Table 4. Comparison of classification results of different methods on Indian Pines dataset

      Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
      C197.22100.0097.83100.0091.67
      C297.8198.2891.3995.0795.93
      C398.8299.8596.02100.0099.56
      C493.3982.8247.6892.5191.63
      C5100.00100.0098.3499.70100.00
      C6100.0097.5998.9099.48100.00
      C7100.00100.00100.00100.00100.00
      C8100.00100.00100.00100.00100.00
      C9100.00100.00100.00100.00100.00
      C1097.9399.3994.3499.1599.03
      C1198.5799.0584.9799.2299.13
      C1299.7797.5298.3195.2699.77
      C1385.6482.5671.2285.6489.74
      C14100.0099.9198.81100.0099.28
      C15100.00100.0098.70100.00100.00
      C1686.7592.7787.1078.3195.18
      OA(%)98.3798.2291.9896.5298.41
      AA(%)97.2496.8691.4897.9797.56
      KAPPA(%)98.1197.9490.8997.6598.16
    • Table 5. Comparison of classification results of different methods on Pavia University dataset

      View table
      View in Article

      Table 5. Comparison of classification results of different methods on Pavia University dataset

      Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
      C196.6293.1888.8096.7699.15
      C294.3797.7184.1099.3499.70
      C391.7497.6979.6698.9299.69
      C496.1293.4594.8881.6797.25
      C5100.0099.8399.7898.2499.92
      C699.80100.0091.4199.92100.00
      C799.9299.9295.3499.49100.00
      C896.7299.0489.3599.5298.58
      C997.6297.2499.7991.0999.37
      OA(%)95.9497.2087.8896.1199.39
      AA(%)96.9997.5691.4597.5799.30
      KAPPA(%)94.6296.2684.3496.7499.18
    • Table 6. Comparison of classification results of different methods on WHU-Hi-LongKou dataset

      View table
      View in Article

      Table 6. Comparison of classification results of different methods on WHU-Hi-LongKou dataset

      Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
      C198.0097.0598.9199.5699.66
      C298.2098.5460.4599.2999.77
      C399.7999.9398.81100.0099.90
      C491.4793.1884.9098.0296.29
      C599.5899.9386.2799.4899.63
      C698.7998.9798.7698.1098.89
      C798.6498.3898.8696.8199.73
      C892.6392.4793.9595.2398.48
      C998.4197.9998.4196.6398.39
      OA(%)96.1296.4292.5398.1298.53
      AA(%)97.2897.3891.0397.6898.97
      KAPPA(%)94.9495.3290.3797.2098.07
    Tools

    Get Citation

    Copy Citation Text

    Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 30, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: ZHANG Haokui (hkzhang@nwpu.edu.cn)

    DOI:10.37188/OPE.20243223.3504

    Topics