Infrared and Laser Engineering, Volume. 53, Issue 4, 20230663(2024)

Temperature adaptability of optical middle cabin of airborne high-energy laser system based on cage-type structure

Xiang Li1,2, Chen Zhou3、*, Yongqi Zhu3, Keyan Dong1,2, Liang Gao1,2, Yan An1,2, Wenqiang Xi3, and Yuhai Liu3
Author Affiliations
  • 1College of Opto-electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2National and Local Joint Engineering Research Center of Space and Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China
  • 3College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(16)
    System working principle diagram
    Optical system composition
    Structure diagram of optical middle cabin of cage-type
    Finite element model of optical middle cabin and components
    Temperature analysis results of each mirrors. (a) Upper 45° incident reflector; (b) Upper 45° exit reflector; (c) Lower 45° incident reflector; (d) Fine tracking spectroscope; (e) Fine tracking reflector 1; (f) FSM of fine tracking; (g) Lower 45° exit reflector; (h) Fine tracking reflector 2
    Coordinate system of optical axis
    System wave aberration detection diagram
    System wave aberration at different temperatures
    RMS follows temperature curve
    System optical axis deviation experiment
    • Table 1. Technical indicators of optical middle cabin

      View table
      View in Article

      Table 1. Technical indicators of optical middle cabin

      Technical indicatorsRequirement
      Overall dimensionØ500×300 mm
      Operating temperature15-25 ℃
      System wave aberration≤1/12λ@632.8 nm
      Coaxiality of each branch circuit≤150 µrad
    • Table 2. Material allocation in optical middle cabin

      View table
      View in Article

      Table 2. Material allocation in optical middle cabin

      PartMaterial
      Connection tube2A12
      Mounting plate2A12
      Mirror support2A12
      MirrorH-K9L
      Frock2A12
      RubberRTV
    • Table 3. materials properties of optical middle cabin

      View table
      View in Article

      Table 3. materials properties of optical middle cabin

      MaterialE/GPaρ/g·cm−3κ/W·(m·K)−1α/×10−6·℃−1
      H-K9L79.22.521.17.6
      2A1268.22.6812123.6
      RTV0.0052.21.34236
    • Table 4. Each mirror deflection angle (Unit: μrad)

      View table
      View in Article

      Table 4. Each mirror deflection angle (Unit: μrad)

      Mirror${\theta _{xi}}$${\theta _{ {{y} }i} }$
      Upper 45° incident reflector ${\theta _{x1}}/{\theta _{y1}}$−14.061−9.702
      Upper 45° exit reflector ${\theta _{x2} }/{\theta _{ {{y} }2} }$13.83910.606
      Lower 45° incident reflector ${\theta _{x3} }/{\theta _{ {{y3} } } }$15.205−11.302
      Fine tracking spectroscope ${\theta _{x4} }/{\theta _{ {{y4} } } }$20.58415.632
      Fine tracking reflector 1 ${\theta _{x5} }/{\theta _{ {{y5} } } }$11.96711.930
      FSM of fine tracking ${\theta _{x6} }/{\theta _{ {{y6} } } }$7.47018.252
      Lower 45° exit reflector ${\theta _{x7} }/{\theta _{ {{y7} } } }$16.961−12.679
      Fine tracking reflector 2 ${\theta _{x8} }/{\theta _{ {{y8} } } }$−23.64028.496
    • Table 5. \begin{document}$\lambda ,{P_x},{P_y}$\end{document} value of each mirror

      View table
      View in Article

      Table 5. \begin{document}$\lambda ,{P_x},{P_y}$\end{document} value of each mirror

      Mirror$\lambda $${P_x}$${P_y}$
      Upper 45° incident reflector−90°$(0.707, - 0.707,0)$$(0,0,1)$
      Upper 45° exit reflector90°$(0.707, - 0.707,0)$$(0,0,1)$
      Lower 45° incident reflector90°$(0.707, - 0.707,0)$$(0,0,1)$
      Fine tracking spectroscope90°$(0,0,1)$$( - 0.707,0.707,0)$
      Fine tracking reflector 1−90°$(0,0,1)$$(0.707, - 0.707,0)$
      FSM of fine tracking−90°$(0,0,1)$$(0.707, - 0.707,0)$
      Lower 45° exit reflector−90°$(0.707, - 0.707,0)$$(0,0,1)$
      Fine tracking reflector 290°$(0,0,1)$$( - 0.707,0.707,0)$
    • Table 6. Experiment corresponds to spot coordinates

      View table
      View in Article

      Table 6. Experiment corresponds to spot coordinates

      SpotTemperatureCoordinate 1Coordinate 2Coordinate 3Average
      Fine tracking20 ℃(+0.00,+0.00)(+0.00,+0.00)(+0.00,+0.00)(+0.00,+0.00)
      25 ℃(−9.31,+1.51)(−8.81,+1.73)(−8.97,+1.39)(−9.03,+1.54)
      Main laser20 ℃(+0.00,+0.00)(+0.00,+0.00)(+0.00,+0.00)(+0.00,+0.00)
      25 ℃(−1.18,+10.92)(−1.20,+10.70)(−1.37,+11.06)(−1.25,+10.89)
    Tools

    Get Citation

    Copy Citation Text

    Xiang Li, Chen Zhou, Yongqi Zhu, Keyan Dong, Liang Gao, Yan An, Wenqiang Xi, Yuhai Liu. Temperature adaptability of optical middle cabin of airborne high-energy laser system based on cage-type structure[J]. Infrared and Laser Engineering, 2024, 53(4): 20230663

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 30, 2023

    Accepted: --

    Published Online: Jun. 21, 2024

    The Author Email: Zhou Chen (chenrandom@163.com)

    DOI:10.3788/IRLA20230663

    Topics