Infrared and Laser Engineering, Volume. 51, Issue 3, 20210139(2022)

Infrared and visible image fusion of convolutional neural network and NSST

Kewei Huan... Xiangyang Li, Yutong Cao and Xiao Chen |Show fewer author(s)
Author Affiliations
  • College of Physics, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(10)
    Convolutional neural network structure
    Cross entropy loss function
    Infrared image ''UN Camp''and images after saliency extraction by various methods. (a) Infrared image "UN Camp"; (b) Standard segmentation of image "UN Camp"; (c) AC method; (d) SR method; (e) LC method; (f) FT method; (g) CNN method; (h) CNN+FT method
    Infrared image ''dune'' and images after saliency extraction by various methods. (a) Infrared image "dune"; (b) Standard segmentation of image "dune"; (c) AC method; (d) SR method; (e) LC method; (f) FT method; (g) CNN method; (h) CNN+FT method
    Image fusion model based on convolutional neural network and NSST
    ''UN Camp'' infrared and visible images and fusion results. (a) Infrared image; (b) Visible image; (c) DWT method; (d) CS method; (e) BEMD method; (f) NSCT+FL method; (g) NSST+FL method; (h) Proposed method; (i) Significant area fusion image
    ''dune'' infrared and visible images and fusion results. (a) Infrared image; (b) Visible image; (c) DWT method; (d) CS method; (e) BEMD method; (f) NSCT+FL method; (g) NSST+FL method; (h) Proposed method; (i) Significant area fusion image
    ''iron'' infrared and visible images and fusion results. (a) Infrared image; (b)Visible image; (c) DWT method; (d) CS method; (e) BEMD method; (f) NSCT+FL method; (g) NSST+FL method; (h) Proposed method; (i) Significant area fusion image
    • Table 1. Target significance extraction evaluation index MAE

      View table
      View in Article

      Table 1. Target significance extraction evaluation index MAE

      MethodACSRLCFTCNNCNN+FT
      MAE115.641.008.599.340.500.27
      MAE28.450.552.912.910.630.35
    • Table 2. Infrared and visible image fusion effect evaluation

      View table
      View in Article

      Table 2. Infrared and visible image fusion effect evaluation

      ImageMethodEAGSFMICE
      UNDWT6.934 27.049 213.921 72.668 30.356 3
      CampCS6.252 74.965 910.300 51.593 30.599 9
      BEMD6.603 86.146 212.007 71.573 80.575 9
      NSCT+FL6.810 57.110 914.126 52.432 80.326 4
      NSST+FL6.855 57.051 614.475 82.355 00.279 8
      Proposed method7.116 38.008 216.106 92.991 90.264 8
      DuneDWT6.657 46.507 512.371 82.594 30.307 2
      CS5.903 84.694 89.790 91.188 40.654 5
      BEMD6.156 65.426 710.391 41.196 50.576 0
      NSCT+FL6.675 86.578 315.540 92.222 00.292 5
      NSST+FL6.666 77.365 313.954 22.637 00.301 4
      Proposed method6.701 17.386 814.153 92.815 70.289 2
      IronDWT6.677 812.647 633.730 43.617 30.550 3
      CS6.537 27.647 520.025 43.177 30.498 7
      BEMD6.677 79.090 623.349 13.392 50.539 7
      NSCT+FL6.767 714.998 138.969 73.397 50.474 5
      NSST+FL6.751 115.645 440.410 43.177 40.427 9
      Proposed method6.768 716.282 241.718 83.701 30.409 3
    Tools

    Get Citation

    Copy Citation Text

    Kewei Huan, Xiangyang Li, Yutong Cao, Xiao Chen. Infrared and visible image fusion of convolutional neural network and NSST[J]. Infrared and Laser Engineering, 2022, 51(3): 20210139

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Nov. 22, 2021

    Accepted: --

    Published Online: Apr. 8, 2022

    The Author Email:

    DOI:10.3788/IRLA20210139

    Topics