Laser & Optoelectronics Progress, Volume. 58, Issue 18, 1811002(2021)

Progress and Prospect of Scattering Imaging

Xin Jin1、*, Xiaoyu Wang1, Dongyu Du1, Yihui Fan1, and Xiangyang Ji2
Author Affiliations
  • 1Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
  • 2Department of Automation, Tsinghua University, Beijing 100084, China
  • show less
    References(205)

    [1] Zhu L, Shao X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 40, 011005(2020).

    [2] Ji X Y. Coded photography[J]. Acta Optica Sinica, 40, 0111012(2020).

    [3] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).

    [4] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [6] Xie X S, Liu Y K, Liang H W et al. Speckle correlation imaging: from point spread functions to light field plenoptics[J]. Acta Optica Sinica, 40, 0111004(2020).

    [7] Li X J, Tang W S, Yi W J et al. Review of optical scattering imaging technology with wide field of view and long distance[J]. Chinese Journal of Lasers, 48, 0401012(2021).

    [8] Guy S. All photons imaging time-resolved computational imaging through scattering for vehicles and medical applications with probabilistic and data-driven algorithms[D], 43-55(2019).

    [9] Feng S, Kane C, Lee P A et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).

    [10] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).

    [11] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics andIts Applications, 168, 49-65(1990).

    [12] Feng S, Lee P A. Mesoscopic conductors and correlations in laser speckle patterns[J]. Science, 251, 633-639(1991).

    [13] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [14] Katz O, Small E, Bromberg Y et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 5, 372-377(2011).

    [17] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [18] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy:imaging through turbid layers[J]. Optics Letters, 35, 1245-1247(2010).

    [21] Zhang X L, Kner P. Binary wavefront optimization using a genetic algorithm[J]. Journal of Optics, 16, 125704(2014).

    [22] Boniface A, Blochet B, Dong J et al. Noninvasive light focusing in scattering media using speckle variance optimization[J]. Optica, 6, 1381-1385(2019).

    [23] Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations[J]. Optics Letters, 44, 143-146(2019).

    [24] Li Q Y, Zhaxi B M, Chen Z Y et al. Focusing of laser through strong scattering media with different thicknesses[J]. Acta Optica Sinica, 40, 0111016(2020).

    [25] Wu Y L. The research of focusing and imaging through scattering media[D], 64-74(2020).

    [26] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154(2011).

    [28] Wang Y M, Judkewitz B, Dimarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).

    [29] Zhuang H C, He H X, Xie X S et al. High speed color imaging through scattering media with a large field of view[J]. Scientific Reports, 6, 32696(2016).

    [30] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 6, 33558(2016).

    [31] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 62, 55-59(1972).

    [32] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 79, 745(1974).

    [33] Chen Q Q, He H X, Xu X Q et al. Memory effect based filter to improve imaging quality through scattering layers[J]. IEEE Photonics Journal, 10, 1-10(2018).

    [34] Xie X S, Zhuang H C, He H X et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific Reports, 8, 4585(2018).

    [35] Antipa N, Kuo G, Heckel R et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 5, 1-9(2018).

    [36] Monakhova K, Yanny K, Aggarwal N et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array[J]. Optica, 7, 1298-1307(2020).

    [37] Han W, Zhang Y, Xin Y. Imaging and tracking moving objects through scattering medium[J]. Acta Optica Sinica, 40, 1211001(2020).

    [38] Jin X, Wang Z P, Wang X Y et al. Depth of field extended scattering imaging by light field estimation[J]. Optics Letters, 43, 4871-4874(2018).

    [39] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 4, 1209-1213(2017).

    [40] Xu X Q, Xie X S, Thendiyammal A et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference[J]. Optics Express, 26, 15073-15083(2018).

    [42] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [43] Miao J W, Charalambous P, Kirz J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [44] Goodman J W. Statistical properties of laser speckle patterns[M]. //Dainty J C. Laser speckle and related phenomena. Topics in applied physics, 9, 9-75(1975).

    [45] Wu T F, Katz O, Shao X P et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 41, 5003-5006(2016).

    [46] Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media[J]. Optics Express, 25, 3935-3945(2017).

    [47] Shi Y Y, Liu Y W, Sheng W et al. Single-shot video of three-dimensional moving objects through scattering layers[J]. Acta Optica Sinica, 40, 2211003(2020).

    [48] Li X H, Greenberg J A, Gehm M E. Single-shot multispectral imaging through a thin scatterer[J]. Optica, 6, 864-871(2019).

    [49] Wang X, Liu H L, Hu C Y et al. Transmissive imaging through scattering media based on multi-wavelength illumination[J]. Acta Optica Sinica, 40, 1611002(2020).

    [50] Singh A K, Naik D N, Pedrini G et al. Exploiting scattering media for exploring 3D objects[J]. Light, Science & Applications, 6, e16219(2017).

    [51] Tang D, Sahoo S K, Tran V et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 57, 7533-7538(2018).

    [52] Li L, Li Q, Sun S et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function[J]. Optics Letters, 43, 1670-1673(2018).

    [53] Guo C F, Liu J T, Li W et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information[J]. Optics Communications, 434, 203-208(2019).

    [54] Chen M J, Liu H L, Liu Z T et al. Expansion of the FOV in speckle autocorrelation imaging by spatial filtering[J]. Optics Letters, 44, 5997-6000(2019).

    [55] Gardner D F, Divitt S, Watnik A T. Ptychographic imaging of incoherently illuminated extended objects using speckle correlations[J]. Applied Optics, 58, 3564-3569(2019).

    [56] Wang X Y, Jin X, Li J Q et al. Prior-information-free single-shot scattering imaging beyond the memory effect[J]. Optics Letters, 44, 1423-1426(2019).

    [57] Wang X Y, Jin X, Li J Q. Blind position detection for large field-of-view scattering imaging[J]. Photonics Research, 8, 920-928(2020).

    [58] Sadot D, Rosenfeld A, Shuker G et al. High-resolution restoration of images distorted by the atmosphere, based on an average atmospheric modulation transfer function[J]. Optical Engineering, 34, 1799-1807(1995).

    [59] Yitzhaky Y, Dror I, Kopeika N S. Restoration of atmospherically blurred images using weather-predicted atmospheric Modulation Transfer Function (MFT)[ J]. Proceedings of SPIE, 2828, 386-396(1996).

    [60] Cong B. Encoding neural networks to compute the atmospheric point spread function[C]. //Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540), March 27-29, 2000, Las Vegas, NV, USA, 344-349(2000).

    [61] Narasimhan S G, Nayar S K. Shedding light on the weather[C]. //2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, June 18-20, 2003, Madison, WI, USA.(2003).

    [62] Narasimhan S. Models and algorithms for vision through the atmospere[D], 124-126(2004).

    [63] Metari S, Deschenes F. A new convolution kernel for atmospheric point spread function applied to computer vision[C]. //2007 IEEE 11th International Conference on Computer Vision, October 14-21, 2007, Rio de Janeiro, Brazil., 1-8(2007).

    [64] Wang R, Li R, Sun H Y. Haze removal based on multiple scattering model with superpixel algorithm[J]. Signal Processing, 127, 24-36(2016).

    [65] Lyons A, Tonolini F, Boccolini A et al. Computational time-of-flight diffuse optical tomography[J]. Nature Photonics, 13, 575-579(2019).

    [66] Lindell D B, Wetzstein G. Three-dimensional imaging through scattering media based on confocal diffuse tomography[J]. Nature Communications, 11, 4517(2020).

    [67] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [68] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).

    [69] Gong C M. Research on focusing and image recovery algorithm for random scattering optical system[D], 88-94(2017).

    [70] Hofer M, Brasselet S. Manipulating the transmission matrix of scattering media for nonlinear imaging beyond the memory effect[J]. Optics Letters, 44, 2137-2140(2019).

    [71] Choi Y, Yang T D, Fang-Yen C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).

    [72] Yu H, Hillman T R, Choi W et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 111, 153902(2013).

    [73] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).

    [74] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).

    [75] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).

    [76] Mounaix M, Defienne H, Gigan S. Deterministic light focusing in space and time through multiple scattering media with a Time-Resolved Transmission Matrix approach[J]. Physical Review A, 94, 041802(2016).

    [77] McGlamery B L. A computer model for underwater camera systems[J]. Proceedings of SPIE, 0208, 221-231(1980).

    [78] Yang M, Hu J T, Li C Y et al. An in-depth survey of underwater image enhancement and restoration[J]. IEEE Access, 7, 123638-123657(2019).

    [79] Jaffe J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 15, 101-111(1990).

    [80] Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 30, 570-587(2005).

    [81] Chao L, Wang M. Removal of water scattering[C]. //2010 2nd International Conference on Computer Engineering and Technology, April 16-18, 2010, Chengdu, China..

    [83] Wu X J, Li H S. A simple and comprehensive model for underwater image restoration[C]. //2013 IEEE International Conference on Information and Automation (ICIA), August 26-28, 2013, Yinchuan, China., 699-704(2013).

    [84] Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather[C]. //Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), June 15, 2000, Hilton Head, SC, USA, 598-605(2000).

    [86] Fattal R. Single image dehazing[J]. ACM Transactions on Graphics, 27, 1-9(2008).

    [87] Tan R T. Visibility in bad weather from a single image[C]. //2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA., 1-8(2008).

    [88] Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image[C]. //2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, 2009, Kyoto, Japan., 2201-2208(2009).

    [89] Wang W C, Yuan X H, Wu X J et al. Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 19, 1142-1155(2017).

    [90] Xiao C X, Gan J J. Fast image dehazing using guided joint bilateral filter[J]. The Visual Computer, 28, 713-721(2012).

    [91] Ju M Y, Ding C, Zhang D Y et al. BDPK: Bayesian dehazing using prior knowledge[J]. IEEE Transactions on Circuits and Systems for Video Technology, 29, 2349-2362(2019).

    [92] Ju M Y, Ding C, Zhang D Y et al. Gamma-correction-based visibility restoration for single hazy images[J]. IEEE Signal Processing Letters, 25, 1084-1088(2018).

    [93] Fattal R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 34, 13(2014).

    [94] Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 24, 3522-3533(2015).

    [95] Bui T M, Kim W. Single image dehazing using color ellipsoid prior[J]. IEEE Transactions on Image Processing, 27, 999-1009(2018).

    [96] Peng Y T, Cao K M, Cosman P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 27, 2856-2868(2018).

    [97] Kim S E, Park T H, Eom I K. Fast single image dehazing using saturation based transmission map estimation[J]. IEEE Transactions on Image Processing, 29, 1985-1998(2020).

    [98] Lu Z W, Long B Y, Yang S Q. Saturation based iterative approach for single image dehazing[J]. IEEE Signal Processing Letters, 27, 665-669(2020).

    [99] Raikwar S C, Tapaswi S. Lower bound on transmission using non-linear bounding function in single image dehazing[J]. IEEE Transactions on Image Processing, 29, 4832-4847(2020).

    [100] Carlevaris-Bianco N, Mohan A, Eustice R M. Initial results in underwater single image dehazing[C]. //OCEANS 2010 MTS/IEEE SEATTLE, September 20-23, 2010, Seattle, WA, USA., 1-8(2010).

    [101] Drews P, Jr, do Nascimento E, Moraes F et al. Transmission estimation in underwater single images[C]. //2013 IEEE International Conference on Computer Vision Workshops, December 2-8, 2013, Sydney, NSW, Australia., 825-830(2013).

    [102] Drews P L J, Nascimento E R, Botelho S S C et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 36, 24-35(2016).

    [104] Raju D, Babu J S. Removal of artificial light source and image de-hazing in under water images using WCID algorithm[J]. International Journal of Engineering Research & Technology, 3, 715-717(2014).

    [105] Ancuti C, Ancuti C O, de Vleeschouwer C et al. Multi-scale underwater descattering[C]. //2016 23rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016, Cancun, Mexico., 4202-4207(2016).

    [106] Lin J Q, Yu M, Xu H Y et al. Underwater image restoration based on light attenuation prior and background light fusion[J]. Laser & Optoelectronics Progress, 58, 0810013(2021).

    [107] Ancuti C, Ancuti C O, de Vleeschouwer C et al. Day and night-time dehazing by local airlight estimation[J]. IEEE Transactions on Image Processing, 29, 6264-6275(2020).

    [108] Marques T P, Branzan Albu A. L2UWE: a framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion[C]. //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 14-19, 2020, Seattle, WA, USA, 2286-2295(2020).

    [109] Song W, Wang Y, Huang D M et al. Enhancement of underwater images with statistical model of background light and optimization of transmission map[J]. IEEE Transactions on Broadcasting, 66, 153-169(2020).

    [110] Mandal S, Rajagopalan A N. Local proximity for enhanced visibility in haze[J]. IEEE Transactions on Image Processing, 29, 2478-2491(2020).

    [111] Ju M Y, Ding C, Ren W Q et al. IDE:image dehazing and exposure using an enhanced atmospheric scattering model[J]. IEEE Transactions on Image Processing, 30, 2180-2192(2021).

    [112] Berman D, Treibitz T, Avidan S. Non-local image dehazing[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 1674-1682(2016).

    [113] Berman D, Treibitz T, Avidan S. Single image dehazing using haze-lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 720-734(2020).

    [114] Berman D, Levy D, Avidan S et al. Underwater single image color restoration using haze-lines and a new quantitative dataset[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 2822-2837(2021).

    [115] Ju M Y, Ding C, Guo Y J et al. IDGCP: image dehazing based on gamma correction prior[J]. IEEE Transactions on Image Processing, 29, 3104-3118(2020).

    [116] Galdran A, Bria A, Alvarez-Gila A et al. On the duality between retinex and image dehazing[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 8212-8221(2018).

    [117] Li M D, Liu J Y, Yang W H et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 27, 2828-2841(2018).

    [118] Land E H. The retinex[J]. American Scientist, 52, 247-264(1964).

    [119] Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 61, 1-11(1971).

    [120] Horn B K P. Determining lightness from an image[J]. Computer Graphics and Image Processing, 3, 277-299(1974).

    [121] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 6, 451-462(1997).

    [122] Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 6, 965-976(1997).

    [124] Fu X Y, Liao Y H, Zeng D L et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation[J]. IEEE Transactions on Image Processing, 24, 4965-4977(2015).

    [125] Ren X T, Li M D, Cheng W H et al. Joint enhancement and denoising method via sequential decomposition[C]. //2018 IEEE International Symposium on Circuits and Systems (ISCAS), May 27-30, 2018, Florence, Italy., 1-5(2018).

    [126] Gu Z H, Li F, Fang F M et al. A novel retinex-based fractional-order variational model for images with severely low light[J]. IEEE Transactions on Image Processing, 29, 3239-3253(2020).

    [127] Ren X T, Yang W H, Cheng W H et al. LR3M: robust low-light enhancement via low-rank regularized retinex model[J]. IEEE Transactions on Image Processing, 29, 5862-5876(2020).

    [128] Tang M, Xie F Y, Zhang R et al. A local flatness based variational approach toretinex[J]. IEEE Transactions on Image Processing, 29, 7217-7232(2020).

    [129] Xu J, Hou Y K, Ren D W et al. STAR: a structure and texture aware retinex model[J]. IEEE Transactions on Image Processing, 29, 5022-5037(2020).

    [130] Hummel R. Image enhancement by histogram transformation[J]. Computer Graphics and Image Processing, 6, 184-195(1977).

    [131] Reza A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 38, 35-44(2004).

    [132] Iqbal K, Salam R A, Osman A et al. Underwater image enhancement using an integrated colour model[J]. IAENG International Journal of computer science, 34, 239-244(2007).

    [133] Iqbal K, Odetayo M, James A et al. Enhancing the low quality images using unsupervised colour correction method[C]. //2010 IEEE International Conference on Systems, Man and Cybernetics, October 10-13, 2010, Istanbul, Turkey., 1703-1709(2010).

    [134] Ghani A S A, Isa N A M. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching[J]. 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin), 219-220(2014).

    [135] Ghani A S A, Isa N A M. Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Applied Soft Computing, 27, 219-230(2015).

    [137] Land E H. The retinex theory of color vision[J]. Scientific American, 237, 108-128(1977).

    [138] Buchsbaum G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 310, 1-26(1980).

    [139] Weng C C, Chen H, Fuh C S. A novel automatic white balance method for digital still cameras[C]. //2005 IEEE International Symposium on Circuits and Systems (ISCAS), May 23-26, 2005, Kobe, Japan., 3801-3804(2005).

    [140] Ancuti C, Ancuti C O, Haber T et al. Enhancing underwater images and videos by fusion[C]. //2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA., 81-88(2012).

    [142] Ancuti C O, Ancuti C, de Vleeschouwer C et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 27, 379-393(2018).

    [143] Galdran A. Image dehazing by artificial multiple-exposure image fusion[J]. Signal Processing, 149, 135-147(2018).

    [144] Gao S B, Zhang M, Zhao Q et al. Underwater image enhancement using adaptive retinal mechanisms[J]. IEEE Transactions on Image Processing, 28, 5580-5595(2019).

    [145] Zheng M Y, Qi G Q, Zhu Z Q et al. Image dehazing by an artificial image fusion method based on adaptive structure decomposition[J]. IEEE Sensors Journal, 20, 8062-8072(2020).

    [146] Tarel J P, Hautière N, Cord A et al. Improved visibility of road scene images under heterogeneous fog[C]. //2010 IEEE Intelligent Vehicles Symposium, June 21-24, 2010, La Jolla, CA, USA., 478-485(2010).

    [147] Tarel J P, Hautiere N, Caraffa L et al. Vision enhancement in homogeneous and heterogeneous fog[J]. IEEE Intelligent Transportation Systems Magazine, 4, 6-20(2012).

    [148] Ancuti C, Ancuti C O, de Vleeschouwer C. D-HAZY: a dataset to evaluate quantitatively dehazing algorithms[C]. //2016 IEEE International Conference on Image Processing (ICIP), September 25-28, 2016, Phoenix, AZ, USA, 2226-2230(2016).

    [149] Li B Y, Ren W Q, Fu D P et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 28, 492-505(2019).

    [150] Sakaridis C, Dai D X, van Gool L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 126, 973-992(2018).

    [151] Ancuti C, Ancuti C O, Timofte R et al. I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images[M]. //Talon J B, Helbert D, Philips W, et al. Advanced concepts for intelligent vision systems. Lecture notes in computer science, 11182, 620-631(2018).

    [152] Ancuti C O, Ancuti C, Timofte R et al. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 18-22, 2018, Salt Lake City, UT, USA, 867-8678(2018).

    [153] Bijelic M, Kysela P, Gruber T et al. Recovering the unseen: benchmarking the generalization of enhancement methods to real world data in heavy fog[C]. //IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, June 16-20, 2019, Long Beach, CA, USA, 11-21(2019).

    [154] Zhao S Y, Zhang L, Huang S Y et al. Dehazing evaluation: real-world benchmark datasets, criteria, and baselines[J]. IEEE Transactions on Image Processing, 29, 6947-6962(2020).

    [155] Min X K, Zhai G T, Gu K et al. Quality evaluation of image dehazing methods using synthetic hazy images[J]. IEEE Transactions on Multimedia, 21, 2319-2333(2019).

    [156] Chen Z Y, Jiang T T, Tian Y H. Quality assessment for comparing image enhancement algorithms[C]. //2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA., 3003-3010(2014).

    [157] Choi L K, You J, Bovik A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 24, 3888-3901(2015).

    [158] Gu K, Tao D C, Qiao J F et al. Learning a no-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 1301-1313(2018).

    [159] Min X K, Zhai G T, Gu K et al. Objective quality evaluation of dehazed images[J]. IEEE Transactions on Intelligent Transportation Systems, 20, 2879-2892(2019).

    [160] Tian J D, Murez Z, Cui T et al. Depth and image restoration from light field in a scattering medium[C]. //2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy., 2420-2429(2017).

    [161] Gao J, Chu Q T, Zhang X D et al. Image dehazing method based on light field depth estimation and atmospheric scattering model[J]. Acta Photonica Sinica, 49, 0710001(2020).

    [162] Moon I, Javidi B. Three-dimensional visualization of objects in scattering medium by use of computational integral imaging[J]. Optics Express, 16, 13080-13089(2008).

    [163] Tavakoli B, Javidi B, Watson E. Three dimensional visualization by photon counting computational integral imaging[J]. Optics Express, 16, 4426-4436(2008).

    [164] Cho M, Javidi B. Three-dimensional visualization of objects in turbid water using integral imaging[J]. Journal of Display Technology, 6, 544-547(2010).

    [166] Cho M, Javidi B. Peplography: a passive 3D photon counting imaging through scattering media[J]. Optics Letters, 41, 5401-5404(2016).

    [167] Lee Y, Yoo H. Three-dimensional visualization of objects in scattering medium using integral imaging and spectral analysis[J]. Optics and Lasers in Engineering, 77, 31-38(2016).

    [168] Joshi R, O’Connor T, Shen X et al. Optical 4D signal detection in turbid water by multi-dimensional integral imaging using spatially distributed and temporally encoded multiple light sources[J]. Optics Express, 28, 10477-10490(2020).

    [169] Tao M W, Srinivasan P P, Malik J et al. Depth from shading, defocus, and correspondence using light-field angular coherence[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1940-1948(2015).

    [170] Bajpayee A, Techet A H, Singh H. Real-time light field processing for autonomous robotics[C]. //2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 1-5, 2018, Madrid, Spain., 4218-4225(2018).

    [171] Dansereau D G, Pizarro O, Williams S B. Linear volumetric focus for light field cameras[J]. ACM Transactions on Graphics, 34, 1-20(2015).

    [172] Chai J X, Chan S C, Shum H Y et al. Plenoptic sampling[C]. //Proceedings of the 27th annual conference on Computer graphics and interactive techniques-SIGGRAPH’00, July 23-28, 2000, New Orleans, LA, USA., 307-318(2000).

    [173] Wang L, Ho P P, Liu C et al. Ballistic 2-D imaging through scattering walls using an ultrafast opticalkerr gate[J]. Science, 253, 769-771(1991).

    [174] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [175] Nasr M B, Saleh B E, Sergienko A V et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters, 91, 083601(2003).

    [176] Kang S, Jeong S, Choi W et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 9, 253-258(2015).

    [177] Jeong S, Lee Y R, Choi W et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 12, 277-283(2018).

    [178] Jeong S, Kim D Y, Lee Y R et al. Iterative optimization of time-gated reflectance for the efficient light energy delivery within scattering media[J]. Optics Express, 27, 10936-10945(2019).

    [179] Badon A, Li D Y, Lerosey G et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media[C]. //Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), June 26-29, 2017, San Francisco, California, MW3C, 1(2017).

    [180] Kang S, Kang P, Jeong S et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering[J]. Nature Communications, 8, 2157(2017).

    [181] Kim M, Jo Y, Hong J H et al. Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm[J]. Nature Communications, 10, 3152(2019).

    [182] Yoon S, Lee H, Hong J H et al. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull[J]. Nature Communications, 11, 5721(2020).

    [183] Badon A, Barolle V, Irsch K et al. Distortion matrix concept for deep optical imaging in scattering media[J]. Science Advances, 6, eaay7170(2020).

    [184] Laurenzis M, Christnacher F, Monnin D. Long-range three-dimensional active imaging with superresolution depth mapping[J]. Optics Letters, 32, 3146-3148(2007).

    [185] Redo-Sanchez A, Heshmat B, Aghasi A et al. Terahertz time-gated spectral imaging for content extraction through layered structures[J]. Nature Communications, 7, 12665(2016).

    [186] Maccarone A, McCarthy A, Ren X M et al. Underwater depth imaging using time-correlated single photon counting[J]. Optics Express, 23, 33911-33926(2015).

    [187] Jarabo A, Masia B, Marco J et al. Recent advances in transient imaging: a computer graphics and vision perspective[J]. Visual Informatics, 1, 65-79(2017).

    [188] Satat G, Tancik M, Raskar R. Towards photography through realistic fog[C]. //2018 IEEE International Conference on Computational Photography (ICCP), May 4-6, 2018, Pittsburgh, PA, USA., 1-10(2018).

    [190] Velten A, Willwacher T, Gupta O et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 3, 745(2012).

    [191] Arellano V, Gutierrez D, Jarabo A. Fast back-projection for non-line of sight reconstruction[J]. Optics Express, 25, 11574-11583(2017).

    [192] la Manna M, Kine F, Breitbach E et al. Error backprojection algorithms for non-line-of-sight imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1615-1626(2019).

    [193] O’Toole M, Lindell D B, Wetzstein G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 555, 338-341(2018).

    [194] Thrampoulidis C, Shulkind G, Xu F H et al. Exploiting occlusion in non-line-of-sight active imaging[J]. IEEE Transactions on Computational Imaging, 4, 419-431(2018).

    [195] Tsai C Y, Sankaranarayanan A C, Gkioulekas I. Beyond volumetric albedo: a surface optimization framework for non-line-of-sight imaging[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA, 1545-1555(2019).

    [196] Heide F, O’Toole M, Zang K et al. Non-line-of-sight imaging with partial occluders and surface normals[J]. ACM Transactions on Graphics, 38, 1-10(2019).

    [197] Lindell D B, Wetzstein G, O’Toole M. Wave-based non-line-of-sight imaging using fast f-k migration[J]. ACM Transactions on Graphics, 38, 1-13(2019).

    [198] Liu X, Guillén I, La Manna M et al. Non-line-of-sight imaging using phasor-field virtual wave optics[J]. Nature, 572, 620-623(2019).

    [199] Xin S M, Nousias S, Kutulakos K N et al. A theory of Fermat paths for non-line-of-sight shape reconstruction[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 6793-6802(2019).

    [200] Heide F, Xiao L, Heidrich W et al. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors[C]. //2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA, 3222-3229(2014).

    [202] Heide F, Hullin M B, Gregson J et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics, 32, 1-10(2013).

    [203] Muraji T, Tanaka K, Funatomi T et al. Depth from phasor distortions in fog[J]. Optics Express, 27, 18858-18868(2019).

    [204] Panigrahi S, Fade J, Ramachandran H et al. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media[J]. Optics Express, 24, 16066-16083(2016).

    [205] Panigrahi S, Fade J, Agaisse R et al. An all-optical technique enables instantaneous single-shot demodulation of images at high frequency[J]. Nature Communications, 11, 549(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xin Jin, Xiaoyu Wang, Dongyu Du, Yihui Fan, Xiangyang Ji. Progress and Prospect of Scattering Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jun. 2, 2021

    Accepted: Jul. 29, 2021

    Published Online: Sep. 1, 2021

    The Author Email: Jin Xin (jin.xin@sz.tsi)

    DOI:10.3788/LOP202158.1811002

    Topics