Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 110(2022)

Research Progresses on Flexible Sulfide Solid Electrolytes

HU Jiangkui1...2,*, YUAN Hong1,2, ZHAO Chenzi3, LU Yang3, SUN Shuo3, and HUANG Jiaqi12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(67)

    [1] [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.

    [2] [2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008, 451(7179): 652–657.

    [3] [3] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303–4417.

    [4] [4] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J].Chem Soc Rev, 2011, 40(5): 2525–2540.

    [5] [5] ZHOU D, LIU R L, HE Y B, et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Adv Energy Mater,2016, 6(7): 1502214.

    [6] [6] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 1–16.

    [8] [8] LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies[J]. Adv Funct Mater, 2021, 31(18): 2009925.

    [9] [9] FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. J Power Sources, 2010, 195(15): 4554–4569.

    [10] [10] HU J K, HE P G, ZHANG B C, et al. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Mater, 2020, 26: 283–289.

    [11] [11] ZHANG B C, CHEN L, HU J K, et al. Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes[J]. J Power Sources, 2019, 442:227230.

    [13] [13] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.

    [14] [14] XU L, LU Y, ZHAO C Z, et al. Toward the scale-up of solid-state lithium metal batteries: The gaps between lab-level cells and practical large-format batteries[J]. Adv Energy Mater, 2021, 11(4): 2002360.

    [15] [15] FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nat Rev Mater, 2021, 6(11): 1003–1019.

    [16] [16] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Adv Mater, 2017,29(1): 1603436.

    [17] [17] CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small, 2018, 14(43):1702989.

    [18] [18] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Adv Energy Mater, 2018, 8(27):1800933.

    [19] [19] KANNO R, MARUYAMA M. Lithium ionic conductor thio-LISICON the Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7):A742–A746.

    [20] [20] ZHENG N F, BU X H, FENG P Y. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature,2003, 426(6965): 428–432.

    [21] [21] HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses[J]. Electrochem Commun, 2003, 5(2): 111–114.

    [22] [22] UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211: 42–45.

    [23] [23] MINAMI K, HAYASHI A, TATSUMISAGO M. Mechanochemical synthesis of Li2S–P2S5 glass electrolytes with lithium salts[J]. Solid State Ionics, 2010, 181(33/34): 1505–1509.

    [24] [24] MINAMI K, MIZUNO F, HAYASHI A, et al. Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics, 2007, 178(11/12):837–841.

    [25] [25] MURAYAMA M, KANNO R, KAWAMOTO Y, et al. Structure of the thio-LISICON, Li4GeS4[J]. Solid State Ionics, 2002, 154: 789–794.

    [26] [26] KENNEDY J H, YANG Y. A highly conductive Li+-glass system:(1–x)(0.4SiS2–0.6Li2S)–xLiI[J]. J Electrochem Soc, 1986,133(11): 2437–2438.

    [27] [27] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses[J]. Adv Mater, 2005, 17(7): 918–921.

    [28] [28] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energ Environ Sci, 2014, 7(2): 627–631.

    [29] [29] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J].Angew Chem Int Ed, 2008, 47(4): 755–758.

    [30] [30] KRAFT M A, CULVER S P, CALDERON M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I) [J]. J Am Chem Soc, 2017, 139(31):10909–10918.

    [31] [31] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.

    [32] [32] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4):1–7.

    [33] [33] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Adv Energy Mater, 2018, 8(18):1800035.

    [34] [34] WADA H, MENETRIER M, LEVASSEUR A, et al. Preparation and ionic-conductivity of new B2S3–Li2S–LiI glasses[J]. Mater Res Bull,1983, 18(2): 189–193.

    [35] [35] ZHENG F, KOTOBUKI M, SONG S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. J Power Sources,2018, 389: 198–213.

    [36] [36] RAO R P, ADAMS S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries[J]. Phys Status Solidi A, 2011, 208(8):1804–1807.

    [37] [37] DEISEROTH H J, MAIER J, WEICHERT K, et al. Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements[J]. Chem, 2011, 637(10), 1287–1294.

    [38] [38] INOUE Y, SUZUKI K, MATSUI N, et al. Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12[J]. J Solid State Chem, 2017,246: 334–340.

    [39] [39] MINAFRA N, CULVER S P, KRAUSKOPF T, et al. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites[J]. J Mater Chem A, 2018, 6(2): 645–651.

    [40] [40] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries[J]. J Am Chem Soc, 2018, 140(47):16330–16339.

    [41] [41] KAIB T, HADDADPOUR S, KAPITEIN M, et al. New lithium chalcogenidotetrelates, licht: Synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4[J]. Chem Mater, 2012, 24(11): 2211–2219.

    [42] [42] ZHOU P, WANG J, CHENG F, et al. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure[J].Chem Commun, 2016, 52(36): 6091–6094.

    [43] [43] SAHU G, LIN Z, LI J, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ Sci,2014, 7(3): 1053–1058.

    [44] [44] BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. J Am Chem Soc, 2013, 135(42):15694–15697.

    [45] [45] WHITELEY J M, WOO J H, HU E, et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. J Electrochem Soc, 2014, 161(12): A1812–A1817.

    [46] [46] LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. J Electrochem Soc, 2017,164(9): A2075–A2081.

    [47] [47] TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Appl Energy Mater, 2019, 2(9): 6542–6550.

    [48] [48] LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nat Energy, 2020, 5(4): 299–308.

    [49] [49] HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Mater, 2019, 21: 390–398.

    [50] [50] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Sci Rep, 2018, 8(1): 1–10.

    [51] [51] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett,2015, 15(5): 3317–3323.

    [52] [52] ZHU G L, ZHAO C Z, PENG H J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries[J]. Adv Funct Mater, 2021, 31(32): 2101985.

    [53] [53] JIANG T, HE P, LIANG Y, et al. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries[J]. Chem Eng J, 2021, 421: 129965.

    [54] [54] YUAN H, NAN H X, ZHAO C Z, et al. Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells[J]. Batteries Supercaps, 2020, 3(7): 596–603.

    [55] [55] ZHOU L, PARK K-H, SUN X, et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Lett, 2018, 4(1): 265–270.

    [56] [56] OH D Y, NAM Y J, PARK K H, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Adv Energy Mater, 2015, 5(22): 1500865.

    [57] [57] WANG Z X, JIANG Y, WU J, et al. Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte[J]. Chem Eng J, 2020, 393: 124706.

    [58] [58] INADA T, TAKADA K, KAJIYAMA A, et al. Fabrications and properties of composite solid-state electrolytes[J]. Solid State Ionics,2003, 158(3/4): 275–280.

    [59] [59] INADA T, TAKADA K, KAJIYAMA A, et al. Silicone as a binder in composite electrolytes[J]. J Power Sources, 2003, 119: 948–950.

    [60] [60] INADA T, KOBAYASHI T, SONOYAMA N, et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON[J]. J Power Sources, 2009, 194(2): 1085–1088.

    [61] [61] A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. J Power Sources, 2014, 248: 943–950.

    [62] [62] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett,2015, 15(5): 3317–3323.

    [63] [63] SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. J Electrochem Soc, 2017, 164(12): A2474–A2478.

    [64] [64] NAM Y J, OH D Y, JUNG S H, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes[J].J Power Sources, 2018, 375(31): 93–101.

    [65] [65] CHOI S J, LEE S H, HA Y C, et al. Synthesis and electrochemical characterization of a glass–ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2018, 165(5):A957–A962.

    [66] [66] RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes: A comparative binder study[J]. J Electrochem Soc, 2018, 165(16): A3993–A3999.

    [67] [67] TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J].ACS Appl Energy Mater, 2019, 2(9): 6542–6550.

    [68] [68] ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Lett, 2021, 21(12): 5233–5239.

    [69] [69] LI M, FRERICHS J E, KOLEK M, et al. Solid-state lithium-sulfur battery enabled by thio-Lisicon/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Adv Funct Mater, 2020, 30(14):1910123.

    CLP Journals

    [1] SU Jiawen, LIU Limin, ZHOU Xiaoliang, XU Yao, GUO Weilin, GUO Xinru. Research Progress of NASICON-Type Sodium-Ion Conductor Solid-State Electrolyte[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1611

    Tools

    Get Citation

    Copy Citation Text

    HU Jiangkui, YUAN Hong, ZHAO Chenzi, LU Yang, SUN Shuo, HUANG Jiaqi. Research Progresses on Flexible Sulfide Solid Electrolytes[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 110

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 18, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email: Jiangkui HU (1319849472@qq.com)

    DOI:10.14062/j.issn.0454-5648.20210699

    Topics