Spectroscopy and Spectral Analysis, Volume. 30, Issue 11, 3018(2010)
Diagnosis of Cucumber Diseases and Insect Pests by Fluorescence Spectroscopy Technology Based on PCA-SVM
[1] [1] Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1955.
[2] [2] Cao Y Y, Frank P M. IEEE Trans on Fuzzy Systems, 2000, 8(2): 200.
[4] [4] Rober E K, David J G, Grant R G. Society of Photo-Optical Instrum Entation Engineers, 2000, 39(3): 704.
[8] [8] Hartley R D. Phytochemistry, 1973, 12: 305.
[9] [9] Harris P J, Hartely R D. Nature, 1976, 259: 508.
[10] [10] Lichtenthaler H K, Schweiger J. Journal of Plant Physiology, 1998, 152: 272.
[11] [11] Pfudel E. Photosynth Research, 1988, 56: 185.
Get Citation
Copy Citation Text
YANG Hao-yu, YU Hai-ye, LIU Xu, ZHANG Lei, SUI Yuan-yuan. Diagnosis of Cucumber Diseases and Insect Pests by Fluorescence Spectroscopy Technology Based on PCA-SVM[J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 3018
Received: Sep. 28, 2009
Accepted: --
Published Online: Jan. 26, 2011
The Author Email: Hao-yu YANG (yhymoon@sina.com)
CSTR:32186.14.