Chinese Journal of Quantum Electronics, Volume. 39, Issue 5, 677(2022)

Excimer laser amplification technology of ultraviolet ultrashort pulse

Yanlin ZHANG1,2,3、*, Libing YOU1,3,4, Hongwei WANG1, Qi WANG5, Zexiong HU1,2, Jun FAN1,2, and Xiaodong FANG1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(39)

    [1] [1] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114.

    [2] [2] Zvorykin V D, Goncharov S A, Ionin A A, et al. Experimental capabilities of the GARPUN MTW Ti: sapphire-KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets[J]. Quantum Electronics, 2017, 47(4): 319-326.

    [3] [3] Tomov I V, Fedosejevs R, Richardson M C, et al. Picosecond gain and saturation measurements of the 353 nm XeF laser line[J]. Applied Physics Letters, 1977, 31(11): 747-749.

    [4] [4] He L W, Fang X D. Progress of application of excimer laser micromachining[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 641-648.

    [6] [6] Szatmári S. High-brightness ultraviolet excimer lasers[J]. Applied Physics B, 1994, 58(3): 211-223.

    [7] [7] Glownia J H, Kaschke M, Sorokin P P. Amplification of 193 nm femtosecond seed pulses generated by third-order, nonresonant,difference-frequency mixing in xenon[J]. Optics Letters, 1992, 17(5): 337-339.

    [8] [8] Bates J W, Myatt J F, Shaw J G, et al. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth[J]. Physical Review E, 2018, 97: 061202.

    [9] [9] Mcintyre I A, Rhodes C K. High power ultrafast excimer lasers[J]. Journal of Applied Physics, 1991, 69(1): R1-R19.

    [10] [10] Szatmári S. Short-pulse KrF amplifier using spatially tunable X-ray preionization[J]. Review of Scientific Instruments, 2020, 91(4): 043001.

    [11] [11] Wang Z, Zhang J, Li J, et al. Amplification and beam combination of ultra-short KrF laser pulse[J]. High Power Laser and Particle Beams, 2020, 32(1): 85-88.

    [13] [13] Tanaka S, Arakawa M, Fuchimukai A, et al. Development of high coherence high power 193 nm laser[C]. Proceeding of SPIE, 2016, 9726: 972624.

    [14] [14] Zhou H. Study on the Generation of UV and VUV Ultrashort Pulses and the Applications[D]. Shanghai: East China Normal University, 2014.

    [15] [15] Glownia J H, Arjavalingam G, Sorokin P P, et al. Amplification of 350-fsec pulses in XeCl excimer gain modules[J]. Optics Letters, 1986, 11(2): 79.

    [16] [16] Szatmári S, Rácz B, Schffer F P. Bandwidth limited amplification of 220 fs pulses in XeCl[J]. Optics Communications, 1987, 62(4): 271-276.

    [17] [17] Hofinann T, Mossavi K, Tittel F K, et al. Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm[J]. Optics Letters, 1992, 17(23): 1691-1693.

    [18] [18] Mossavi K, Hofmann T, Szabó G, et al. Femtosecond gain characteristics of the discharge-pumped ArF excimer amplifier[J]. Optics Letters, 1993, 18(6): 435-437.

    [19] [19] Stamm U, Kleinschmidt J, Voss F, et al. High repetition rate amplification of femtosecond pulses in the ultraviolet spectral range[J]. AIP Conference Proceedings, 1995, 329(1): 363-366.

    [20] [20] Nabekawa Y, Sajiki K, Yoshitomi D, et al. High-repetition-rate high-average-power 300 fs KrF/Ti: sapphire hybrid laser[J]. Optics Letters, 1996, 21(9): 647-649.

    [21] [21] Sadovskii S P, Chizhov P A, Bukin V V, et al. Picosecond laser system with a wavelength of 193 nm based on a solid-state Nd: YAG laser, parametric oscillator, and ArF amplifier[J]. Physics of Wave Phenomena, 2014, 22(4): 223-226.

    [22] [22] Corkum P, Taylor R. Picosecond amplification and kinetic studies of XeCl[J]. IEEE Journal of Quantum Electronics, 1982, 18(11): 1962-1975.

    [23] [23] Kannari F, Obara M. Characteristics of amplification of ultrashort laser pulses in excimer media[C]. Proceeding of SPIE, 1991, 1397: 85-89.

    [24] [24] Momma C, Eichmann H, Jacobs H, et al. Short-pulse amplification and gain dynamics of an ArF excimer amplifier[J]. Optics Letters, 1993, 18(7): 516-518.

    [25] [25] Mossavi K, Hofmann T, Tittel F K, et al. Ultrahigh-brightness, femtosecond ArF excimer laser system[J]. Applied Physics Letters, 1993, 62(11): 1203-1205.

    [26] [26] Nabekawa Y, Yoshitomi D, Sekikawa T, et al. High-average-power femtosecond KrF excimer laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 551-558.

    [27] [27] Grun J, Cranch G A, Lunsford R, et al. Scaled experiments of explosions in cavities[J]. Journal of Applied Physics, 2016, 119(18): 184903.

    [28] [28] Marozas J A, Hohenberger M, Rosenberg M J, et al. First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility[J]. Physical Review Letters, 2018, 120(8): 085001.

    [29] [29] Dadap J I, Focht G B, Reitze D H, et al. Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement[J]. Optics Letters, 1991, 16(7): 499-501.

    [30] [30] Omenetto F G, Schroeder W A, Boyer K, et al. Measurement of 160 fs, 248 nm pulses by two-photon fluorescence in fused-silica crystals[J]. Applied Optics, 1997, 36(15): 3421-3424.

    [31] [31] Dai X M. Study on the Measurement of UV Femtosecond Laser Pulse Duration[D]. Shanghai: East China Normal University, 2010.

    [32] [32] Beutler M, Ghotbi M, Noack F, et al. Generation of sub-50 fs vacuum ultraviolet pulses by four-wave mixing in argon[J]. Optics Letters, 2010, 35(9): 1491-1493.

    [33] [33] Xu Y S, Zhang J, Zhang H F, et al. Study on ultraviolet single shot autocorrelator based on transient grating diffraction[J]. Atomic Energy Science and Technology, 2017, 51(3): 567-571.

    [34] [34] Miyazaki K, Fukatsu T, Yamashita I, et al. Output and picosecond amplification characteristics of an efficient and high-power discharge excimer laser[J]. Applied Physics B, 1991, 52(1): 1-7.

    [35] [35] Szatmári S, Almási G, Simon P. Off-axis amplification scheme for short-pulse amplifiers[J]. Applied Physics B, 1991, 53(2): 82-87.

    [36] [36] Slattery S A, Nikogosyan D N. Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides[J]. Optics Communications, 2003, 228(1-3): 127-131.

    [37] [37] Dragonmir A, McInerney J G, Nikogosyan D N. Femtosecond measurements of two-photon absorption coefficients at lambda=264 nm in glasses, crystals, and liquids[J]. Applied Optics, 2002, 41(21): 4365-4376.

    [38] [38] Patankar S, Yang S T, Moody J D, et al. Two-photon absorption measurements of deep UV transmissible materials at 213 nm[J]. Applied Optics, 2017, 56(30): 8309-8312.

    [39] [39] Kittelmann O, Ringling J. Intensity-dependent transmission properties of window materials at 193 nm irradiation[J]. Optics Letters, 1994, 19(24): 2053-2055.

    [40] [40] Taylor A J, Gibson R B, Roberts J P. Two-photon absorption at 248 nm in ultraviolet window materials[J]. Optics Letters, 1988, 13(10): 814-816.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yanlin, YOU Libing, WANG Hongwei, WANG Qi, HU Zexiong, FAN Jun, FANG Xiaodong. Excimer laser amplification technology of ultraviolet ultrashort pulse[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 677

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 8, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: Yanlin ZHANG (yanlinz@mail.ustc.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2022.05.001

    Topics