Laser & Optoelectronics Progress, Volume. 58, Issue 11, 1114005(2021)

Nonsynergistic Response in Laser Additive Manufacturing of Nickel-Based Superalloys Comprising the Constrained Structure of a Ductile Iron Surface

Tiantian Lang and Ming Pang*
Author Affiliations
  • Airport College, Civil Aviation University of China, Tianjin 300300, China
  • show less
    Figures & Tables(10)
    Finite element model of laser additive spheroidal graphite cast iron. (a) Schematic of laser additive area of ductile iron model; (b) finite element model
    Temperature changes of paths A and B at different powers. (a)Temperature change curves of side path A;(b) temperature change curves of bottom path B; (c) schematic of paths
    Temperature curves changed with time at the monitoring point when the laser additive scanning distance is 0.01 m
    Molten pool depth curves under five critical conditions. (a) The depth of the side of molten pool; (b) the depth of the bottom of molten pool
    Sections at the highest temperature point when the laser additive scanning distance reaches 0.01 m under five critical conditions. (a) P=2 kW,V=1 mm/s; (b) P= 3 kW,V=2 mm/s; (c) P= 4 kW,V=5 mm/s; (d) P=5 kW,V=7 mm/s;(e) P=6 kW,V=10 mm/s
    Contour maps of temperature gradient in z direction under five critical conditions. (a) P=2 kW,V=1 mm/s; (b) P= 3 kW,V=2 mm/s; (c) P= 4 kW,V=5 mm/s; (d) P=5 kW,V=7 mm/s; (e) P=6 kW,V=10 mm/s
    Organization and temperature gradients of the additive layer under P=2 kW and V=1 mm/s. (a) Top organization of additive layer cross-section; (b) horizontal and vertical temperature gradients at the same location
    • Table 1. Thermal physical parameters of ductile iron

      View table

      Table 1. Thermal physical parameters of ductile iron

      Temperature /℃Thermal conductivity /(W·m-1·℃-1)Specific heat capacity /(J·kg-1·℃-1)Density /(kg·m-3)
      2029.554917096
      20029.795267096
      40028.955697096
      60028.236987096
      76526.6211007096
      80025.908247096
      100024.647427096
      150021.9610317096
    • Table 2. Thermal physical parameters of Ni25

      View table

      Table 2. Thermal physical parameters of Ni25

      Temperature /℃Thermal conductivity /(W·m-1·℃-1)Specific heat capacity /(J·kg-1·℃-1)Density /(kg·m-3)
      2016.04247528.4
      20016.24507528.4
      40017.14537528.4
      60020.14607528.4
      80022.04937528.4
      100025.05217528.4
      150033.46207528.4
    • Table 3. Fusion situation of substrates at different powers and speeds

      View table

      Table 3. Fusion situation of substrates at different powers and speeds

      Power /kWFusion situation at different speeds
      1 mm /s2 mm /s3 mm /s4 mm /s5 mm /s6 mm /s7 mm /s8 mm /s9 mm /s10 mm /s
      1××××××××××
      2×××××××××
      3××××××××
      4×××××
      5×××
      6
    Tools

    Get Citation

    Copy Citation Text

    Tiantian Lang, Ming Pang. Nonsynergistic Response in Laser Additive Manufacturing of Nickel-Based Superalloys Comprising the Constrained Structure of a Ductile Iron Surface[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1114005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 28, 2020

    Accepted: Dec. 2, 2020

    Published Online: Jun. 7, 2021

    The Author Email: Pang Ming (pangming1980@126.com)

    DOI:10.3788/LOP202158.1114005

    Topics