Opto-Electronic Engineering, Volume. 51, Issue 9, 240128-1(2024)
Progress in the research of directed thermal radiation
[1] Inoue T, de Zoysa M, Asano T et al. Realization of dynamic thermal emission control[J]. Nat Mater, 13, 928-931(2014).
[2] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Adv Mater, 29, 1701275(2017).
[3] Beenakker C W J. Thermal radiation and amplified spontaneous emission from a random medium[J]. Phys Rev Lett, 81, 1829-1832(1998).
[4] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Appl Phys Lett, 98, 241105(2011).
[5] Jung D, Bank S, Lee M L et al. Next-generation mid-infrared sources[J]. J Opt, 19, 123001(2017).
[6] Palchetti L, Di Natale G, Bianchini G. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission[J]. J Geophys Res Atmos, 121, 10804-10819(2016).
[7] Fu Z, Zhong D et al. Scalable asymmetric fabric evaporator for solar desalination and thermoelectricity generation[J]. Adv Sci, 20, e2406474(2024).
[8] Zhang R, Song Z et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding[J]. Light Sci Appl, 13, 223(2024).
[9] Xu G, Kang Q et al. Inverse-design laser-infrared compatible stealth with thermal management enabled by wavelength-selective thermal emitter[J]. Appl Therm Eng, 255, 124063(2024).
[10] Xu Z Q, Luo H, Zhu H Z et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Lett, 21, 5269-5276(2021).
[11] Pralle M U, Moelders N, McNeal M P et al. Photonic crystal enhanced narrow-band infrared emitters[J]. Appl Phys Lett, 81, 4685-4687(2002).
[12] Liu X L, Tyler T, Starr T et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Phys Rev Lett, 107, 045901(2011).
[13] Morsy A M, Barako M T, Jankovic V et al. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films[J]. Sci Rep, 10, 13964(2020).
[14] Costantini D, Lefebvre A, Coutrot A L et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Phys Rev Appl, 4, 014023(2015).
[15] Shchegrov A V, Joulain K, Carminati R et al. Near-field spectral effects due to electromagnetic surface excitations[J]. Phys Rev Lett, 85, 1548-1551(2000).
[16] Carminati R, Greffet J J. Near-field effects in spatial coherence of thermal sources[J]. Phys Rev Lett, 82, 1660-1663(1999).
[17] Wolf E. Non-cosmological redshifts of spectral lines[J]. Nature, 326, 363-365(1987).
[18] Wolf E, James D F V. Correlation-induced spectral changes[J]. Rep Prog Phys, 59, 771-818(1996).
[19] Le Gall J, Olivier M, Greffet J J. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton[J]. Phys Rev B, 55, 10105-10114(1997).
[20] Greffet J J, Carminati R, Joulain K et al. Coherent emission of light by thermal sources[J]. Nature, 416, 61-64(2002).
[21] Park J H, Han S E, Nagpal P et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes[J]. ACS Photon, 3, 494-500(2016).
[22] Zhang X, Liu H, Zhang Z G et al. Controlling thermal emission of phonon by magnetic metasurfaces[J]. Sci Rep, 7, 41858(2017).
[23] Zhang X, Zhang Z G, Wang Q et al. Controlling thermal emission by parity-symmetric fano resonance of optical absorbers in metasurfaces[J]. ACS Photon, 6, 2671-2676(2019).
[24] De Zoysa M, Asano T, Mochizuki K et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nat Photon, 6, 535-539(2012).
[25] Liu X X, Li Z W, Wen Z J et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 11, 19742-19750(2019).
[26] Qu Y R, Pan M Y, Qiu M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources[J]. Phys Rev Appl, 13, 064052(2020).
[27] Zhu L X, Liu F Y, Lin H T et al. Angle-selective perfect absorption with two-dimensional materials[J]. Light Sci Appl, 5, e16052(2016).
[28] Miller D A B, Zhu L X, Fan S H. Universal modal radiation laws for all thermal emitters[J]. Proc Natl Acad Sci USA, 114, 4336-4341(2017).
[29] Zhu L X, Fan S H. Near-complete violation of detailed balance in thermal radiation[J]. Phys Rev B, 90, 220301(R)(2014).
[30] Zhao B, Shi Y, Wang J H et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field[J]. Opt Lett, 44, 4203-4206(2019).
[31] Zhao B, Guo C, Garcia C A C et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Lett, 20, 1923-1927(2020).
[32] Tsurimaki Y, Qian X, Pajovic S et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking[J]. Phys Rev B, 101, 165426(2020).
[33] Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies[J]. J Appl Phys, 51, R1-R20(1980).
[34] Green M A. Time-asymmetric photovoltaics[J]. Nano Lett, 12, 5985-5988(2012).
[35] Inampudi S, Cheng J R, Salary M M et al. Unidirectional thermal radiation from a SiC metasurface[J]. J Opt Soc Am B, 35, 39-46(2018).
[36] Zhao B, Wang J H, Zhao Z X et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels[J]. Phys Rev Appl, 16, 064001(2021).
[37] Yu J B, Qin R, Ying Y B et al. Asymmetric directional control of thermal emission[J]. Adv Mater, 35, 2302478(2023).
[38] Lucchi E. Applications of the infrared thermography in the energy audit of buildings: a review[J]. Renew Sustain Energy Rev, 82, 3077-3090(2018).
[39] Sakr E, Bermel P. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters[J]. Opt Express, 25, A880-A895(2017).
[40] Sakakibara R, Stelmakh V, Chan W R et al. Practical emitters for thermophotovoltaics: a review[J]. J Photon Energy, 9, 32713-32713(2019).
[41] Raman A P, Li W, Fan S H. Generating light from darkness[J]. Joule, 3, 2679-2686(2019).
[42] Raman A P, Anoma M A, Zhu L X et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 515, 540-544(2014).
[43] Yin X B, Yang R G, Tan G et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 370, 786-791(2020).
[44] Johns B, Chattopadhyay S, Mitra J. Tailoring infrared absorption and thermal emission with ultrathin film interferences in Epsilon-Near-Zero media[J]. Adv Photon Res, 3, 2100153(2022).
[45] Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 372, 393-397(2021).
[46] Ying Y B, Ma B Z, Yu J B et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser Photon Rev, 16, 2200018(2022).
[47] McSherry S, Lenert A. Design of a gradient epsilon-near-zero refractory metamaterial with temperature-insensitive broadband directional emission[J]. Appl Phys Lett, 121, 191702(2022).
[48] Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient Epsilon-Near-Zero InAs photonic structures[J]. Adv Mater, 35, 2302956(2023).
[49] Bae M, Kim D H, Kim S K et al. Transparent energy-saving windows based on broadband directional thermal emission[J]. Nanophotonics, 13, 749-761(2024).
[50] Chamoli S K, Li W, Guo C L et al. Angularly selective thermal emitters for deep subfreezing daytime radiative cooling[J]. Nanophotonics, 11, 3709-3717(2022).
[51] Ying Y B, Yu J B, Qin B et al. Directional thermal emission covering two atmospheric windows[J]. Laser Photon Rev, 17, 2300407(2023).
[52] Sarkar M, Giteau M, Enders M T et al. Lithography-free directional control of thermal emission[J]. Nanophotonics, 13, 763-771(2024).
[53] Wang Q Y, Liu T J, Li L N et al. Ultra-broadband directional thermal emission[J]. Nanophotonics, 13, 793-801(2024).
[54] Fan Z W, Hwang T, Lin S et al. Directional thermal emission and display using pixelated non-imaging micro-optics[J]. Nat Commun, 15, 4544(2024).
[55] Brongersma M L, Cui Y, Fan S H. Light management for photovoltaics using high-index nanostructures[J]. Nat Mater, 13, 451-460(2014).
[56] Park Y, Zhao B, Fan S H. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell[J]. Nano Lett, 22, 448-452(2022).
[57] Buddhiraju S, Santhanam P, Fan S H. Thermodynamic limits of energy harvesting from outgoing thermal radiation[J]. Proc Natl Acad Sci USA, 115, E3609-E3615(2018).
[58] Li W, Buddhiraju S, Fan S H. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space[J]. Light Sci Appl, 9, 68(2020).
[59] Zhang Z N, Zhu L X. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer[J]. Phys Rev Appl, 18, 027001(2022).
[60] Pajovic S, Tsurimaki Y, Qian X et al. Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces[J]. Phys Rev B, 102, 165417(2020).
[61] Park Y, Asadchy V S, Zhao B et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures[J]. ACS Photon, 8, 2417-2424(2021).
[62] Hadad Y, Soric J C, Alu A. Breaking temporal symmetries for emission and absorption[J]. Proc Natl Acad Sci USA, 113, 3471-3475(2016).
[63] Liu M Q, Zhao C Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates[J]. Int J Heat Mass Transf, 186, 122435(2022).
[64] Ghalekohneh S J, Zhao B. Nonreciprocal solar thermophotovoltaics[J]. Phys Rev Appl, 18, 034083(2022).
[65] Park Y, Omair Z, Fan S H. Nonreciprocal thermophotovoltaic systems[J]. ACS Photon, 9, 3943-3949(2022).
[66] Liu M Q, Xia S, Wan W J et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films[J]. Nat Mater, 22, 1196-1202(2023).
[67] Zhang Z N, Zhu L X. Broadband nonreciprocal thermal emission[J]. Phys Rev Appl, 19, 014013(2023).
[68] Shi K Z, Sun Y W, Hu R et al. Ultra-broadband and wide-angle nonreciprocal thermal emitter based on Weyl semimetal metamaterials[J]. Nanophotonics, 13, 737-747(2024).
Get Citation
Copy Citation Text
Zhiying Chen, Haotuo Liu, Xiaohu Wu, Kaihua Zhang. Progress in the research of directed thermal radiation[J]. Opto-Electronic Engineering, 2024, 51(9): 240128-1
Category:
Received: May. 31, 2024
Accepted: Jul. 3, 2024
Published Online: Dec. 12, 2024
The Author Email: Xiaohu Wu (吴小虎), Kaihua Zhang (吴小虎)