Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2398(2023)
Progresses on Diatomite‐Templated Syntheses of Two-Dimensional Materials
[1] [1] BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013, 7(4): 2898-2926.
[2] [2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[3] [3] ROY S, ZHANG X, PUTHIRATH A B, et al. Structure, properties and applications of two-dimensional hexagonal boron nitride[J]. Adv Mater, 2021, 33(44): e2101589.
[4] [4] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nat Rev Mater, 2017, 2(8): 1-15.
[5] [5] ZHANG C J, MA Y L, ZHANG X T, et al. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications[J]. Energy Environ Mater, 2020, 3(1): 29-55.
[6] [6] CARVALHO A, WANG M, ZHU X, et al. Phosphorene: From theory to applications[J]. Nat Rev Mater, 2016, 1(11): 1-16.
[7] [7] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[8] [8] TAN C L, ZHANG H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nat Commun, 2015, 6: 7873.
[9] [9] LUO J Y, JANG H D, SUN T, et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano, 2011, 5(11): 8943-8949.
[10] [10] SHAO Y L, FU J H, CAO Z, et al. 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors[J]. ACS Nano, 2020, 14(6): 7308-7318.
[11] [11] MANN D G, DROOP S J M. 3. biodiversity, biogeography and conservation of diatoms[J].Hydrobiologia, 1996, 336(1-3): 19-32.
[12] [12] LOSIC D, MITCHELL J G, VOELCKER N H. Diatomaceous lessons in nanotechnology and advanced materials[J]. Adv Mater, 2009, 21(29): 2947-2958.
[13] [13] CHEN K, LI C, SHI L R, et al. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability[J]. Nat Commun, 2016, 7(1): 1-9.
[14] [14] WALLACE P R. The band theory of graphite[J]. Phys Rev, 1947, 71(9): 622-634.
[15] [15] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8(3): 902-907.
[16] [16] CHEN J H, JANG C, XIAO S D, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nat Nanotechnol, 2008, 3(4): 206-209.
[17] [17] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nat Nanotechnol, 2008, 3(8): 491-495.
[18] [18] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[19] [19] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
[20] [20] LIN Y M, VALDES-GARCIA A, HAN S J, et al. Wafer-scale graphene integrated circuit[J]. Science, 2011, 332(6035): 1294-1297.
[21] [21] EDA G, FANCHINI G, CHHOWALLA M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nanotechnol, 2008, 3(5): 270-274.
[22] [22] STOLLER M D, PARK S, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Lett, 2008, 8(10): 3498-3502.
[23] [23] YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett, 2008, 8(8): 2277-2282.
[24] [24] XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839-843.
[25] [25] SCHWIERZ F. Graphene transistors[J]. Nature Nanotech, 2010, 5(7): 487-496.
[26] [26] SHAO Y Y, WANG J, WU H, et al. Graphene based electrochemical sensors and biosensors: A review[J]. Electroanalysis, 2010, 22(10): 1027-1036.
[27] [27] PYUN J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology[J]. Angew Chem Int Ed, 2011, 50(1): 46-48.
[28] [28] YAN Z, LIU G X, KHAN J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nat Commun, 2012, 3(1): 1-8.
[29] [29] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228-240.
[30] [30] PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat Mater, 2014, 13(6): 624-630.
[31] [31] CHEN K, CHAI Z G, LI C, et al. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation[J]. ACS Nano, 2016, 10(3): 3665-3673.
[32] [32] LI Q C, SONG Y Z, XU R Z, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano, 2018, 12(10): 10240-10250.
[33] [33] HALEY M M, BRAND S C, PAK J J. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures[J]. Angew Chem Int Ed Engl, 1997, 36(8): 836-838.
[34] [34] GAO X, ZHU Y H, YI D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Sci Adv, 2018, 4(7): eaat6378.
[35] [35] LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films[J]. Chem Commun, 2010, 46(19): 3256-3258.
[36] [36] GAO X, ZHOU J Y, DU R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation[J]. Adv Mater, 2016, 28(1): 168-173.
[37] [37] LI J Q, XU J, XIE Z Q, et al. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application[J]. Adv Mater, 2018, 30(20): 1800548.
[39] [39] ALEXANDER A M, HARGREAVES J S J. Alternative catalytic materials: Carbides, nitrides, phosphides and amorphous boron alloys[J]. Chem Soc Rev, 2010, 39(11): 4388-4401.
[40] [40] YI Y Y, YU L H, TIAN Z N, et al. Biotemplated synthesis of transition metal nitride architectures for flexible printed circuits and wearable energy storages[J]. Adv Funct Mater, 2018, 28(50): 1805510.
[41] [41] WU X, ZHANG H B, ZHANG J, et al. Recent advances on transition metal dichalcogenides for electrochemical energy conversion[J]. Adv Mater, 2021, 33(38): 2008376.
[42] [42] RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nat Mater, 2019, 18(10): 1112-1117.
[43] [43] SAPKOTA B, LIANG W T, VAHIDMOHAMMADI A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nat Commun, 2020, 11(1): 1-9.
[44] [44] ZHU L J, HUAN Y H, ZHANG Z Q, et al. Growing biomorphic transition metal dichalcogenides and their alloys toward high permeable membranes and efficient electrocatalysts applications[J]. Energy Environ Mater, 2022(6): e12372.
[45] [45] CHEN D C, NING S C, LAN J, et al. General synthesis of nanoporous 2D metal compounds with 3D bicontinous structure[J]. Adv Mater, 2020, 32(46): 2004055.
[46] [46] DENG J, LI H B, WANG S H, et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nat Commun, 2017, 8(1): 1-8.
[47] [47] YI Y Y, SUN Z T, LI C, et al. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors[J]. Adv Funct Mater, 2020, 30(4): 1903878.
Get Citation
Copy Citation Text
HU Jingyi, PENG You, ZHOU Fan, WANG Jialong, ZHU Lijie, HUAN Yahuan, ZHANG Yanfeng. Progresses on Diatomite‐Templated Syntheses of Two-Dimensional Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2398
Category:
Received: May. 12, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Jingyi HU (hujy-cnc@pku.edu.cn)
CSTR:32186.14.