Journal of Inorganic Materials, Volume. 39, Issue 8, 895(2024)

Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2

Jun CHENG1...2, Jiawei ZHANG1,2,*, Pengfei QIU1,2,3, Lidong CHEN1,2, and Xun SHI12,* |Show fewer author(s)
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    References(41)

    [1] Q H ZHANG, S Q BAI, L D CHEN. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials(2019).

    [2] G J SNYDER, E S TOBERER. Complex thermoelectric materials. Nature Materials(2008).

    [3] Z WU, Z HU. Perspective—powerful micro/nano-scale heat engine: thermoelectric converter on chip. ECS Sensors Plus(2022).

    [4] T ZHU, Y LIU, C FU et al. Compromise and synergy in high- efficiency thermoelectric materials. Advanced Materials(2017).

    [5] Y LIU, Z ZAMANIPOUR, D VASHAEE. Economical FeSi2-SiGe composites for thermoelectric power generation. 2012 IEEE Green Technologies Conference, Tulsa(2012).

    [6] Y MAKITA, T OOTSUKA, Y FUKUZAWA et al. β-FeSi2 as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application(2006).

    [7] O CABALLERO-CALERO, J R ARES, M MARTÍN-GONZÁLEZ. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Advanced Sustainable Systems(2021).

    [8] M ITO, H NAGAI, E ODA et al. Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying. Journal of Materials Science(2002).

    [9] A LAILA, M NANKO, M TAKEDA. Upgrade recycling of cast iron scrap chips towards β-FeSi2 thermoelectric materials. Materials(2014).

    [10] Y DUSAUSOY, J PROTAS, R WANDJI et al. Structure cristalline du disiliciure de fer, FeSi2β. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry(1971).

    [11] J CHAI, C MING, X DU et al. Thermodynamics, kinetics and electronic properties of point defects in β-FeSi2. Physical Chemistry Chemical Physics(2019).

    [12] X DU, P QIU, J CHAI et al. Doubled thermoelectric figure of merit in p-type β-FeSi2via synergistically optimizing electrical and thermal transports. ACS Applied Materials & Interfaces(2020).

    [13] X DU, P HU, T MAO et al. Ru alloying induced enhanced thermoelectric performance in FeSi2-based compounds. ACS Applied Materials & Interfaces, 32151(2019).

    [14] P QIU, J CHENG, J CHAI et al. Exceptionally heavy doping boosts the performance of iron silicide for refractory thermoelectrics. Advanced Energy Materials(2022).

    [15] J I TANI, H KIDO. Electrical properties of Co-doped and Ni-doped β-FeSi2. Journal of Applied Physics(1998).

    [16] J I TANI, H KIDO. Thermoelectric properties of β-Fe1-xCoxSi2 semiconductors. Japanese Journal of Applied Physics(2001).

    [17] S SAM, S ODAGAWA, H NAKATSUGAWA et al. Effect of Ni substitution on thermoelectric properties of bulk β-Fe1-xNixSi2 (0≤x≤0.03). Materials(2023).

    [18] J I TANI, H KIDO. Thermoelectric properties of Pt-doped β-FeSi2. Journal of Applied Physics(2000).

    [19] J I TANI, H KIDO. Thermoelectric properties of Mn-doped β-FeSi2 fabricated by spark plasma sintering. Journal of the Ceramic Society of Japan(2001).

    [20] H Y CHEN, X B ZHAO, Y F LU et al. Microstructures and thermoelectric properties of Fe0.92Mn0.08Six alloys prepared by rapid solidification and hot pressing. Journal of Applied Physics(2003).

    [21] J I TANI, H KIDO. Electrical properties of Cr-doped β-FeSi2. Japanese Journal of Applied Physics(1999).

    [22] S W KIM, M K CHO, Y MISHIMA et al. High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants. Intermetallics(2003).

    [23] T EHARA, S NAITO, S NAKAGOMI et al. Phosphorous doping in beta-irondisilicide by co-sputtering method. Materials Letters(2002).

    [24] T EHARA, S NAKAGOMI, Y KOKUBUN. Preparation of phosphorous dope beta-irondisilicide thin films and application for devices. Solid-State Electronics(2003).

    [25] M ITO, H NAGAI, E ODA et al. Effects of P doping on the thermoelectric properties of β-FeSi2. Journal of Applied Physics, 2138(2002).

    [26] O K GOLDBECK. Iron-Silicon//IRON-Binary Phase Diagrams.

    [27] L YANG, Z G CHEN, M S DARGUSCH et al. High performance thermoelectric materials: progress and their applications. Advanced Energy Materials(2018).

    [28] H S KIM, Z M GIBBS, Y L TANG et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials(2015).

    [29] J CALLAWAY. Model for lattice thermal conductivity at low temperatures. Physical Review(1959).

    [30] H LIU, J YANG, X SHI et al. Reduction of thermal conductivity by low energy multi-Einstein optic modes. Journal of Materiomics(2016).

    [31] J J SHEN, T FANG, T Z FU et al. Lattice thermal conductivity in thermoelectric materials. Journal of Inorganic Materials(2019).

    [32] Z Z ZHOU, Y C YAN, X L YANG et al. Anomalous lattice thermal conductivity driven by all-scale electron-phonon scattering in bulk semiconductors. Physical Review B(2023).

    [33] T ZHU, G YU, J XU et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials(2016).

    [34] Y T QIN, P F QIU, X SHI et al. Thermoelectric properties for CuInTe2-xSx (x=0, 0.05, 0.1, 0.15) solid solution. Journal of Inorganic Materials(2017).

    [35] H XIE, X SU, G ZHENG et al. The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1-xZnxFeS2 with in situ nanoprecipitates. Advanced Energy Materials(2017).

    [36] J YANG, D T MORELLI, G P MEISNER et al. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3. Physical Review B(2002).

    [37] H NAGAI, T TAKAMATSU, Y IIJIMA et al. Effects of Ge substitution on thermoelectric properties of CrSi2. Japanese Journal of Applied Physics(2016).

    [38] A J ZHOU, T J ZHU, X B ZHAO et al. Improved thermoelectric performance of higher manganese silicides with Ge additions. Journal of Electronic Materials, 2002(2010).

    [39] R DU, G ZHANG, M HAO et al. Enhanced thermoelectric performance of Mg-doped AgSbTe2 by inhibiting the formation of Ag2Te. ACS Applied Materials & Interfaces(2023).

    [40] Y WANG, X ZHANG, Y LIU et al. Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping. Vacuum(2020).

    [41] J C LI, D LI, X Y QIN et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn.. Scripta Materialia(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jun CHENG, Jiawei ZHANG, Pengfei QIU, Lidong CHEN, Xun SHI. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2[J]. Journal of Inorganic Materials, 2024, 39(8): 895

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 8, 2024

    Accepted: --

    Published Online: Dec. 12, 2024

    The Author Email: ZHANG Jiawei (jiaweizhang@mail.sic.ac.cn), SHI Xun (xshi@mail.sic.ac.cn)

    DOI:10.15541/jim20240012

    Topics