Journal of Inorganic Materials, Volume. 37, Issue 10, 1141(2022)

NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation

Jing WU1... Libing YU1, Shuaishuai LIU1, Qiuyan HUANG1, Shanshan JIANG1, Matveev ANTON2, Lianli WANG3, Erhong SONG4,* and Beibei XIAO1,* |Show fewer author(s)
Author Affiliations
  • 11. School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • 22. National Research Ogarev Mordovia State University, Saransk 430005, Russia
  • 33. School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • 44. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    Figures & Tables(19)
    (a) Atomic structure of TM1N4/TM2 and (b) screening criterion for TM1N4/TM2 combination
    Gibbs free energy difference between N2 and NNH with the orange line at 1.08 eV Colorful figures are available on website
    Schematic reaction mechanismsColorful figure is available on website
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Cr NRR mechanisms are (a) distal, (b) alternating and (c) enzymatic
    (a-c) Charge variation of the three moieties along the optimal pathway and (d) N-N bond length change in NRR along preferred pathwayMoieties 1, 2, 3 represent the graphene substrate, active center, and NRR intermediates, respectively
    Comparison of binding energy and bulk cohesive energy of the selected complexes
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Mo NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on NiN4/Ta NRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Cr embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Mo embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy diagrams and the corresponding configuration of the NRR intermediates on Ta embedded nitrogen functionalized grapheneNRR mechanisms are (a) distal, (b) alternating, and (c) enzymatic, respectively
    Free energy profiles of N2-to-NH3 conversion on the N vacancy
    Atomic configurations of the hydrogen adsorption on the nitrogen embedded in graphene after geometry optimization
    • Table 1.

      Adsorption energies Eads on Mn1N4/TM2 (Eads in eV)

      View table
      View in Article

      Table 1.

      Adsorption energies Eads on Mn1N4/TM2 (Eads in eV)

      3dScTiVCrMnFeCoNi
      Eads(TM2) N2 end-on -0.22-0.36-0.62-0.72-1.02-1.07-0.89-0.59
      Eads(TM2) N2 side-on 0.12-0.02-1.17-0.35-0.59-0.51-0.33-0.19
      Eads(TM2) H 0.750.20-0.18-0.14-0.19-0.20-0.22-0.38
      4dYZrNbMoTcRuRhPd
      Eads(TM2) N2 end-on -0.14-0.22-1.05-0.70-0.73-0.99-0.73-1.30
      Eads(TM2) N2 side-on -0.130.11-0.42-0.43-0.47-0.44-0.25-0.96
      Eads(TM2) H 0.780.25-0.87-0.380.51-0.11-0.33-1.06
      5dLuHfTaWReOsIrPt
      Eads(TM2) N2 end-on -0.21-0.35-0.60-1.57-1.23-1.30-1.08-0.52
      Eads(TM2) N2 side-on 0.070.02-0.32-1.48-0.88-0.68-0.44-0.23
      Eads(TM2) H 0.65-0.01-1.33-0.92-0.88-0.81-0.87-0.99
    • Table 2.

      Adsorption energies Eads on Fe1N4/TM2 (Eads in eV)

      View table
      View in Article

      Table 2.

      Adsorption energies Eads on Fe1N4/TM2 (Eads in eV)

      3dScTiVCrMnFeCoNi
      Eads(TM2) N2 end-on -0.21-0.75-0.26-0.52-0.94-1.06-0.88-0.53
      Eads(TM2) N2 side-on -0.21-0.37-0.35-0.41-0.59-0.54-0.25-0.56
      Eads(TM2) H 0.930.330.27-0.02-0.14-0.25-0.11-0.37
      4dYZrNbMoTcRuRhPd
      Eads(TM2) N2 end-on -0.14-0.22-0.20-0.62-0.88-0.96-0.76-0.49
      Eads(TM2) N2 side-on 0.22-0.20-0.200.01-0.58-0.41-0.270.01
      Eads(TM2) H 0.900.210.17-0.23-0.12-0.12-0.09-0.33
      5dLuHfTaWReOsIrPt
      Eads(TM2) N2 end-on -0.20-0.31-0.64-0.91-1.15-1.27-1.09-0.26
      Eads(TM2) N2 side-on -0.200.07-0.49-0.77-0.94-0.68-0.480.22
      Eads(TM2) H 0.770.01-0.73-0.84-0.68-0.78-0.72-0.99
    • Table 3.

      Adsorption energies Eads on Co1N4/TM2 (Eads in eV)

      View table
      View in Article

      Table 3.

      Adsorption energies Eads on Co1N4/TM2 (Eads in eV)

      3dScTiVCrMnFeCoNi
      Eads(TM2) N2 end-on -0.21-0.37-0.68-0.84-1.01-1.05-0.85-0.46
      Eads(TM2) N2 side-on -0.20-0.37-0.29-0.51-0.64-0.53-0.26-0.56
      Eads(TM2) H 1.020.37-0.09-0.08-0.36-0.13-0.07-0.28
      4dYZrNbMoTcRuRhPd
      Eads(TM2) N2 end-on -0.12-0.19-0.44-0.61-0.82-0.93-0.75-0.48
      Eads(TM2) N2 side-on -0.13-0.20-0.03-0.29-0.57-0.42-0.25-0.48
      Eads(TM2) H 1.030.42-0.12-0.22-0.07-0.07-0.03-0.26
      5dLuHfTaWReOsIrPt
      Eads(TM2) N2 end-on -0.20-0.29-0.62-0.86-1.08-1.23-1.07-0.49
      Eads(TM2) N2 side-on -0.21-0.29-0.28-0.63-0.89-0.67-0.46-0.48
      Eads(TM2) H 0.820.23-0.50-0.75-0.63-0.72-0.69-0.87
    • Table 4.

      Adsorption energies Eads on Ni1N4/TM2 (Eads in eV)

      View table
      View in Article

      Table 4.

      Adsorption energies Eads on Ni1N4/TM2 (Eads in eV)

      3dScTiVCrMnFeCoNi
      Eads(TM2) N2 end-on -0.21-0.41-0.72-0.91-1.04-1.07-0.79-0.58
      Eads(TM2) N2 side-on -0.190.02-0.41-0.63-0.66-0.50/-0.58
      Eads(TM2) H 0.970.19-0.14-0.40-0.23-0.22-0.18-0.27
      4dYZrNbMoTcRuRhPd
      Eads(TM2) N2 end-on -0.12-0.24-0.51-0.70-0.91-0.98-0.73-0.48
      Eads(TM2) N2 side-on -0.13-0.20-0.23-0.63-0.61-0.44-0.21-0.48
      Eads(TM2) H 0.970.15-0.33-0.22-0.12-0.13-0.16-0.25
      5dLuHfTaWReOsIrPt
      Eads(TM2) N2 end-on -0.20-0.33-0.74-0.98-1.17-1.30-1.06-0.65
      Eads(TM2) N2 side-on -0.200.06-0.49-0.94-0.95-0.68-0.41-0.65
      Eads(TM2) H 0.850.02-0.71-0.66-0.69-0.82-0.81-0.93
    • Table 5.

      Free energy change ΔG (ΔG in eV), Ri stands for the ith protonation step

      View table
      View in Article

      Table 5.

      Free energy change ΔG (ΔG in eV), Ri stands for the ith protonation step

      SystemMechanismsN2 adsorption R1R2R3R4R5R6NH3 desorption
      NiN4/Cr Distal-0.410.98-0.280.17-1.08-1.09-0.231.04
      Alternating-0.410.980.05-0.31-0.25-1.29-0.711.04
      Enzymatic-0.100.570.16-0.56-0.12-1.51-0.381.04
      NiN4/Mo Distal-0.270.92-0.08-0.22-1.14-0.71-0.201.04
      Alternating-0.270.920.16-0.560.06-1.52-0.491.04
      Enzymatic-0.110.600.18-0.890.50-1.54-0.441.04
      NiN4/Ta Distal-0.180.69-0.37-0.06-1.22-1.020.221.04
      Alternating-0.180.690.05-0.880.11-1.780.051.04
      Enzymatic0.040.11-0.23-0.700.58-1.70-0.041.04
    • Table 6.

      Potential determining step and its free energy change ΔGmax(ΔGmax in eV)

      View table
      View in Article

      Table 6.

      Potential determining step and its free energy change ΔGmax(ΔGmax in eV)

      DistalAlternatingEnzymatic
      RDSΔGmaxRDSΔGmaxRDSΔGmax
      Cr*N2+H→*NNH 1.03*N2+H→*NNH 1.03*N*N+H→*N*NH0.66
      NiN4/Cr *N2+H→*NNH 0.98*N2+H→*NNH 0.98*N*N+H→*N*NH0.57
      Mo*N2+H→*NNH 1.27*N2+H→*NNH 1.27*N*N+H→*N*NH0.43
      NiN4/Mo *N2+H→*NNH 0.92*N2+H→*NNH 0.92*N*N+H→*N*NH0.60
      Ta*NNH2+H→*N 0.72*N2+H→*NNH 0.66*NH*NH2+H→*NH2*NH20.49
      NiN4/Ta *N2+H→*NNH 0.69*N2+H→*NNH 0.69*NH*NH2+H→*NH2*NH20.58
    Tools

    Get Citation

    Copy Citation Text

    Jing WU, Libing YU, Shuaishuai LIU, Qiuyan HUANG, Shanshan JIANG, Matveev ANTON, Lianli WANG, Erhong SONG, Beibei XIAO. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH LETTER

    Received: Jan. 20, 2022

    Accepted: --

    Published Online: Jan. 12, 2023

    The Author Email: SONG Erhong (ehsong@mail.sic.ac.cn), XIAO Beibei (xiaobb11@mails.jlu.edu.cn)

    DOI:10.15541/jim20220033

    Topics