Journal of Inorganic Materials, Volume. 36, Issue 4, 347(2021)
[2] J ZHU T, T LIU Y, G FU C et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 29, 26(2017).
[3] A SLACK G, D ROWE. CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC press, 407-440(1995).
[4] L HICKS, DRESSELHAUS. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 47, 16631(1993).
[6] X SHI, H KONG, P LI C et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Applied Physics Letters, 92, 182101(2008).
[10] R LIU, H CHEN, K ZHAO et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 29, 1702712(2017).
[11] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).
[12] N SENKOV O, D MILLER J, B MIRACLE D et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 6, 1-10(2015).
[13] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93(2014).
[14] C WEI P, N LIAO C, J WU H et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 32, 1906457(2020).
[15] B MIRACLE D, D MILLER J, N SENKOV O et al. Exploration and development of high entropy alloys for structural applications. Entropy, 16, 494-525(2014).
[17] S LUCAS M, D BELYEA, C BAUER et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys. Journal of Applied Physics, 113, 17A923(2013).
[18] P KOZELJ, S VRTNIK, A JELEN et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 113, 5(2014).
[19] F KAO Y, K CHEN S, H SHEU J et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 35, 9046-9059(2010).
[20] D BERARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).
[21] D BERARDAN, S FRANGER, K MEENA A et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4, 9536-9541(2016).
[22] S SHAFEIE, S GUO, Q HU et al. High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 118, 184905(2015).
[23] S RA. Thermodynamics of Solids. New York: John Wiley and Sons, 178(1972).
[24] H SONOMURA. Internal strain energy in quaternary III-V compound alloys. Journal of Applied Physics, 59, 739-742(1986).
[25] W SLAUGHTER, J PETROLITO. The linearized theory of elasticity. Applied Mechanics Reviews, 55, B90(2002).
[27] J YANG, P MEISNER G, L CHEN. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 85, 1140-1142(2004).
[28] P MEISNER G, T MORELLI D, S HU et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Physical Review Letters, 80, 3551-3554(1998).
[30] N CHENG, R LIU, S BAI et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. Journal of Applied Physics, 115, 163705(2014).
[31] Y QIN, P QIU, R LIU et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. Journal of Materials Chemistry A, 4, 1277-1289(2016).
[33] J MAO, S KIM H, J SHUAI et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system. Acta Materialia, 103, 633-642(2016).
[35] S BANERJEE, V RAMAKRISHNAN T, C DASGUPTA. Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates. Physical Review B, 83, 024510(2011).
[36] W LIU, C LUKAS K, K MCENANEY et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy & Environmental Science, 6, 552-560(2013).
[39] L HU, Y ZHANG, H WU et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 8, 1802116(2018).
[40] Y ZHAO S, R CHEN, Q LI J et al. Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying. Journal of Alloys and Compounds, 777, 1334-1339(2019).
[41] M POSFAI, R BUSECK P. Djurleite, digenite, and chalcocite: intergrowths and transformations. American Mineralogist, 79, 308-315(1994).
[42] L GULAY, M DASZKIEWICZ, O STROK et al. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 4, 200-205(2011).
[43] A PASHINKIN, V FEDOROV. Phase equilibria in the Cu-Te system. Inorganic Materials, 39, 539-554(2003).
[45] K ZHAO, P QIU, Q SONG et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials. Materials Today Physics, 1, 14-23(2017).
[46] K ZHAO, C ZHU, P QIU et al. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 42, 43-50(2017).
[48] R CHEN, P QIU, B JIANG et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. Journal of Materials Chemistry A, 6, 6493-6502(2018).
[49] B JIANG, P QIU, H CHEN et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 5, 20-28(2018).
[51] Y PEI, A LALONDE, S IWANAGA et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4, 2085-2089(2011).
[52] J LI, X ZHANG, Z CHEN et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2, 976-987(2018).
[54] Z FAN, H WANG, Y WU et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 5, 187-194(2017).
[56] S RAOUX, B MUñOZ, H Y CHENG et al. Phase transitions in Ge-Te phase change materials studied by time-resolved X-ray diffraction. Applied Physics Letters, 95, 143118(2009).
[58] A MUIR J, V BEATO. Phase transformations in the system GeSe- GeTe. Journal of the Less Common Metals, 33, 333-340(1973).
[59] H WIEDEMEIER, P SIEMERS. The thermal expansion and high temperature transformation of GeSe. Zeitschrift für Anorganische und Allgemeine Chemie, 411, 90-96(1975).
[60] M SIST, C GATTI, P NØRBY et al. High-temperature crystal structure and chemical bonding in thermoelectric germanium selenide (GeSe). Chemistry-A European Journal, 23, 6888-6895(2017).
[61] Z HUANG, A MILLER S, B GE et al. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2. Angewandte Chemie International Edition, 129, 14301-14306(2017).
[64] Z FAN, H WANG, Y WU et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 6, 52164-52170(2016).
[66] J YAN, F LIU, G MA et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 157, 129-134(2018).
[67] S SAKURADA, N SHUTOH. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 86, 082105(2005).
[68] A VOLYKHOV, L YASHINA, M TAMM et al. Phase equilibria in ternary reciprocal systems based on IV-VI compounds. Inorganic Materials, 45, 968-974(2009).
[70] D EMIN. Enhanced Seebeck coefficient from carrier-induced vibrational softening. Physical Review B, 59, 6205-6210(1999).
Get Citation
Copy Citation Text
Qingyu YANG, Pengfei QIU, Xun SHI, Lidong CHEN.
Category: REVIEW
Received: Jul. 27, 2020
Accepted: --
Published Online: Nov. 24, 2021
The Author Email: SHI Xun (xshi@mail.sic.ac.cn)