Electronics Optics & Control, Volume. 31, Issue 9, 70(2024)
An Improved HighPerformance Object Detector Based on YOLOv7-tiny
[1] [1] REDMON JFARHADI A.YOLOv3:an incremental improvement[DB/OL].(20180408)[20230801].https://arxiv.org/abs/1804.02767.
[2] [2] BOCHKOVSKIY AWANG C YLIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[DB/OL].(20200423)[20230801].https://arxiv.org/abs/2004.10934.
[3] [3] WANG C YBOCHKOVSKIY ALIAO H Y M.ScaledYOLOv4:scaling cross stage partial network[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Nashville:IEEE2021:1302413033.
[4] [4] GE ZLIU S TWANG Fet al.YOLOX:exceeding YOLO series in 2021[DB/OL].(20210806)[20230801].https://arxiv.org/abs/2107.08430.
[5] [5] LONG XDENG KWANG Get al.PPYOLO:an effective and efficient implementation of object detector[DB/OL].(20200803)[20230801].https://arxiv.org/abs/2007.12099.
[6] [6] HUANG XWANG X XLYU W Yet al.PPYOLOv2:a practical object detector[DB/OL].(20220706)[20230801].https://arxiv.org/abs/2104.10419v1.
[7] [7] XU S LWANG X ZLYU W Yet al.PPYOLOE:an evolved version of YOLO[DB/OL].(20221212)[20230801].https://arxiv.org/abs/2203.16250v3.
[8] [8] JOCHER G.YOLOv5 by ultralytics (Version 7.0)[EB/OL].(20221112)[20231016].https://doi.org/10.5281/zenodo.3908559.
[9] [9] LI C YLI L LJIANG H Let al.YOLOv6:a singlestage object detection framework for industrial applications[DB/OL].(20180907)[20230801].https://arxiv.org/abs/2209.02976.
[10] [10] LI C YLI L LCENG Y Fet al.YOLOv6 v3.0:a fullscale reloading[EB/OL].(20230113)[20230801].https://arxiv.org/abs/2301.05586.
[11] [11] WANG C YBOCHKOVSKIY ALIAO H Y M.YOLOv7:trainable bagoffreebies sets new stateoftheart for realtime object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver:IEEE2023.doi:10.1109/CVPR52729.2023.00721.
[12] [12] JOCHER GCHAURASIA AQIU J.Ultralytics YOLO (Version 8.0.0) [EB/OL].(20230110)[20231016].https://github.com/ultralytics/ultralytics.
[13] [13] XU X ZJIANG Y QCHEN W Het al.DAMOYOLO:a report on realtime object detection design[DB/OL](20230317)[20230801].https://arxiv.org/abs/2211.15444v3.
[18] [18] LI XWANG W HWU L Jet al.Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[C]//NIPS20:Proceedings of the 34th International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc.2020:2100221012.
[19] [19] SHU C YLIU Y FGAO J Fet al.Channelwise knowledge distillation for dense prediction[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal:IEEE2021.doi:10.1109/ICCV48922.2021.00526.
[20] [20] HE K MZHANG X YREN S Qet al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE2016.doi:10.1109/CVPR.2016.90.
[21] [21] WANG C YLIAO H Y MWU Y Het al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle:IEEE2020.doi:10.1109/CVPRW50498.2020.00203.
[22] [22] LEE YHWANG J WLEE S,et al.An energy and GPUcomputation efficient backbone network for realtime object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Long Beach:IEEE2019.doi:10.1109/CVPRW.2019.00103.
[23] [23] RAO L.TreeNet:a lightweight oneshot aggregation convolutional network[DB/OL].(20210925)[20230801].https://arxiv.org/abs/2109.12342v1.
[24] [24] GE ZLIU S TLI Z Met al.OTA:optimal transport assignment for object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE2021.doi:10.1109/CVPR46437.2021.00037.
[25] [25] FENG C JZHONG Y JGAO Yet al.TOOD:taskaligned onestage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal:IEEE2021.doi:10.1109/ICCV48922.2021.00349.
Get Citation
Copy Citation Text
ZHU Wenxu, SHI Tao, ZHOU Jiarun, LIU Zulin, LIU Haixin. An Improved HighPerformance Object Detector Based on YOLOv7-tiny[J]. Electronics Optics & Control, 2024, 31(9): 70
Received: Oct. 16, 2023
Accepted: --
Published Online: Oct. 22, 2024
The Author Email: