Acta Photonica Sinica, Volume. 49, Issue 11, 77(2020)

Research Progresses of Alexandrite Solid-state Lasers (Invited)

Zhi-gang ZHAO1,2, Chen GUAN1,2, Zhen-hua CONG1,2, Xing-yu ZHANG1,2, Zhen ZHU3, Shi-wu WANG4, Yi NIE4, Yang LIU1,2, and Zhao-jun LIU1,2、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technology and Application, Qingdao, Shandong6637, China
  • 3Huaguang Optoelectronics Co., Ltd., Jinan250101, China
  • 4Crystech Co., Ltd., Qingdao, Shandong266000, China
  • show less
    Figures & Tables(35)
    c-axis view of alexandrite structure[21] and the image of alexandrite crystals grown by the Czochralski method in Crystech Co., Ltd.
    Simplified energy level diagram for the alexandrite crystal[22]
    Alexandrite absorption spectrum for Cr3+ dopant concentration of 0.063 at.% and alexandrite fluorescence rate spectra at 300 K[23]
    Schematic diagram of the single bounce alexandrite slab laser, the double-bounce alexandrite slab laser and the extended double bounce alexandrite slab laser[12]
    Schematic diagram of diode-pumped alexandrite vortex laser[44]
    Pumping configuration with two diode modules and the resonator configuration of the alexandrite laser[14]
    Experimental arrangements for fiber-delivered polarized diode single-end-pumped alexandrite laser and double-pass-end-pumped alexandrite laser[45]
    Effective emission cross section spectra of alexandrite for E∥b polarization at different crystal temperatures and variation of small signal gain with temperature[22]
    Thermal lens dioptric power and laser power as a function of the absorbed pump power[48]
    Schematic of double-end-pumped L-shaped alexandrite laser[13]
    Schematic layout of the blue LD pumped alexandrite laser system at cryogenic temperatures and within the temperature range of 300~400 K[49]
    Schematic layout of alexandrite laser system for Q-switching[9]
    Schematic of red LD-pumped Q-switched alexandrite laser and cavity-dumping Q-switched alexandrite laser[53]
    Schematic of Q-switched diode-pumped alexandrite ring laser[55]
    Schematic of W-level Q-switched diode-pumped alexandrite ring laser[56]
    Setup of the experiment for LED-pumped alexandrite laser and the tunable multipass amplifier for a CW Ti:sapphire laser[59]
    Schematic diagram of 532 nm pumped KLM[62] and QD-SESAM passively mode-locked[63] alexandrite laser
    Schematic diagram of 532 nm laser pumped MPC KLM alexandrite laser[64] and graphene passively mode-locked alexandrite laser[65]
    Experimental setup for narrow linewidth alexandrite regenerative amplifier[66]
    Experimental setup for chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier[67]
    System schematic of the alexandrite-pumped alexandrite regenerative amplifier[68]
    Experimental setup diagram of dual-end-pumped alexandrite laser[81]
    Laser spectrum at maximum output power and beam qualities at different output powers[81]
    Laser-tissue absorption spectrum[90]
    Demonstration of a potassium layer measurement with a LD-pumped alexandrite laser[55] and a fashlamp-pumped alexandrite laser[100]
    Multiphoton microscopy images of a mouse popliteal lymph node[112]
    • Table 1. The related thermo-mechanical parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]

      View table
      View in Article

      Table 1. The related thermo-mechanical parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]

      Gain mediumCr3+:BeAl2O4 (Alexandrite)Ti3+:Al2O3 (Ti:sapphire)Cr3+:LiCaAlF6 (Cr:LiCAF)Cr3+:LiSrAlF6 (Cr:LiSAF)Cr3+:LiSrGaF6 (Cr:LiSGaF)Yb3+:Y3Al5O12 (Yb:YAG)
      Mass density ρ/(g·cm-3)3.693.982.993.453.894.56
      Melting point/°C1 8702 0408107667161 970

      Specific heat capacity

      Cp/(J·g-1·°C-1)

      1.050.7610.9350.8420.760.59
      Mohs hardness8.59~43~4~48.5

      Knoop hardness/

      (kg·mm-2)

      1 600~2 300

      1 800 (∥c)

      2 200 (∥a)

      -197-1 320

      Thermal conductivity

      κ/(W·m-1·K-1)

      23 (∥a-b-c)

      30.3 (∥a)

      32.5 (∥c)

      4.58 (∥a)

      5.14 (∥c)

      1, 1.8 (∥a)

      1.68, 3 (∥c)

      1.3 (∥a)

      2.6 (∥c)

      10

      Thermal expansion

      coefficient

      α/(×10-6K-1)

      6 (∥a)

      6 (∥b)

      7 (∥c)

      4.8 & 5.3

      22, 21 (∥a)

      3.6, 3.1 (∥c)

      22.2, 25,

      26 (∥a)

      -9.8, -10,

      -8.1 (∥c)

      12, 23 (∥a)

      0, -5.4 (∥c)

      6.7

      Thermal diffusivity

      D/(×10-3 cm2·s-1)

      6092.5

      16.4 (∥a)

      18.4 (∥c)

      6 (∥a)

      10 (∥c)

      4.4 (∥a)

      8.8 (∥c)

      37

      Young modulus

      E/(×109 Pa)

      46933596

      109 (avg)

      85 (∥c)

      120 (∥a)

      -280, 310
      Poisson's ratio ν~0.250.290.250.3-0.3

      Tensile (fracture)

      strength σf/(×106 Pa)

      457~948 (∥a)

      520 (∥b)

      400-38.5±8-200

      Fracture toughness

      K1c/(×106 Pa·m1/2)

      2.62.2

      0.31,

      0.18~0.37

      0.33, 0.4-1.4

      Thermal figure of merit

      RT'/(W·m-1/2)

      14220.53

      0.42 (∥a)

      0.80 (∥c)

      0.555.1

      Damage threshold/

      (J·cm-2)

      270 @ 12 ns

      7.8 @ 0.5 ps

      80 @ 50 ps

      210 @ 8 ns

      20~25

      @ 50 ps

      1.5 @ 20 ps

      8~24 @ 50 ps

      20~26

      @ 50 ps

      110 @ 4.5 ns
    • Table 2. The spectroscopic and laser parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]

      View table
      View in Article

      Table 2. The spectroscopic and laser parameters of the alexandrite, Ti:Sapphire, Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF, and Yb:YAG crystal[17]

      Gain mediumCr3+:BeAl2O4 (Alexandrite)

      Ti3+:Al2O3

      (Ti:sapphire)

      Cr3+:LiCaAlF6 (Cr:LiCAF)Cr3+:LiSrAlF6 (Cr:LiSAF)Cr3+:LiSrGaF6 (Cr:LiSGaF)Yb3+:Y3Al5O12 (Yb:YAG)
      BirefringenceBiaxialNegative uniaxialPositive uniaxial

      Positive

      uniaxial

      Positive

      uniaxial

      Isotropic
      Refractive index n1.736 7 (∥a) 1.742 1 (∥b) 1.734 6 (∥c)

      1.765 5 (∥a)

      1.757 3 (∥c)

      1.380 (∥a)

      1.380 8 (∥c)

      1.387 3 (∥a)

      1.394 0 (∥c)

      1.389 3 (∥a)

      1.391 (∥c)

      1.82
      Nonlinear refractive index n2/(×10-16 cm2·W-1)

      2

      3.54

      3.2

      0.4

      0.36~0.66

      0.8

      0.52-2.15

      1.26.9

      Temperature dependence of refractive index

      dn/dT/(×10-6 ·K-1)

      5.5, 9.4 (∥a) 7, 8.3 (∥b) 14.9 (∥c)13

      4.2, -7.3 (∥a)

      4.6, -4.9 (∥c)

      -2.5, -4.5 (∥a)

      -4, -9.1 (∥c)

      -7, -2.7

      (∥a)

      -1.8 (∥c)

      9.9
      Group velocity dispersion/(fs2·mm-1)60.756.62422.7~2566.6
      Pump wavelength/nm

      550 (∥a)

      595 (∥b)

      570 (∥c)

      480630650630940
      Absorption bandwidth/nm

      90 (∥a)

      80 (∥b)

      70 (∥c)

      125901008512.5
      Peak absorption cross section σab/(×10-20 cm2)

      3.9 (∥a)

      19 (∥b)

      9 (∥c)

      6.4 (∥c)

      2.6 (∥a)

      1.3 (∥c)

      0.9 (∥a)

      4.5 (∥c)

      2.5 (∥a)

      3 (∥c)

      1.5 (∥a)

      0.83
      Maximum gain wavelength/nm7507907808558401 030
      Tuning range/nm

      714~818

      (300 K)

      660~1180720~887770~1 110777~9771 016~1 108
      Peak emission cross section σem/(×10-20 cm2)0.7 @ 22 °C

      41 (∥c)

      15 (∥a)

      1.3 (∥c)

      0.9 (∥a)

      4.8 (∥c)

      1.6 (∥a)

      3.3 (∥c)

      1.4 (∥a)

      2.1
      Room-temperature fluorescence lifetime τf /µs2623.21756788940
      σemτf/(×10-26 cm2·s)183 @ 22 °C1312283222901 975
      Crystal figure of merit3 0001502 1503 300~2 000-

      Gain saturation fluence

      Jsat/(J·cm-2)

      38 @ 22 °C0.6 (∥c)19.1 (∥c)4.8 (∥c)7.5 (∥c)

      8.8

      9.2

    • Table 3. The research progress of 640 nm red LDs

      View table
      View in Article

      Table 3. The research progress of 640 nm red LDs

      YearWavelength/nmPower/WChip structureInstitution
      200864312

      0.4 mm bar, 20 emitting points,

      40 µm×1.5 mm

      Mitsubishi Electric Co., Japan[25]
      20126351.2

      5 µm×250 µm ridge-waveguide,

      2 mm resonator

      FBH, Germany[30]
      20146392.3

      Single emitting region,

      150 µm×3 mm

      nLight Co., US[29]
      201764420.1

      1 cm bar, 25 emitting points,

      60 µm×0.7 mm

      Sony Co., Japan[31]
      20186386

      Three emitting region,

      180 µm×1.5 mm

      Mitsubishi Electric Co., Japan [27]
      20196384.5

      Double emitting regions,

      150 µm×1.5 mm

      Ushio Opto Semiconductors Inc., Japan[28]
      20196403.9

      Single emitting region,

      100 µm×1.5 mm

      Huaguang Optoelectronics Co., China [32]
    • Table 4. Results of experiments based on flash lamp pumped alexandrite laser

      View table
      View in Article

      Table 4. Results of experiments based on flash lamp pumped alexandrite laser

      YearPump sourcePump parametersLaser output performanceLaser wavelengthRef.
      1979Xe flash lamp-500 mJ, 200 µs; 70 mJ, 120 ns701~794 nm[1]
      1980Flash lamp500 J, 1.5 kW500 mJ, 33 ns, 5 Hz701~818 nm[2]
      1980Flash lamp3.2 kWCW 6.5 W765 nm 744~788 nm[36]
      1980Flash lamp-500 mJ, 20 ns680.4 nm[38]
      1985Hg arc lamp6 kWCW 60 W-[18]
      1985Xe arc lamp8 kWCW 20W-[18]
    • Table 5. Results of continuous-wave alexandrite lasers (non-flashlamp pumping)

      View table
      View in Article

      Table 5. Results of continuous-wave alexandrite lasers (non-flashlamp pumping)

      YearPump source

      Pump

      wavelength/nm

      Pump power/W

      Slope

      efficiency

      Output power/WTuning range/nmRemark
      1983[39]Krypton ion laser647.11.951%0.6726~802Krypton ion laser pumping
      1993[40]Dye laser6450.3664%0.15753.4Dye laser pumping
      1993[40]Red LD6402×0.2528%0.025753-
      2016[41]Green laser5321126%2.6715~800Green laser pumping
      2006[42]Green laser532531%1.4730~780-
      1990[43]Red LD680.40.0125%-751First LD pumping
      2005[11]Red LD680.41024%1.3750-
      2013[8]Red LD680.40.86534%0.2--
      2014[9]Red LD63964.549%26730~792

      Highest output power

      with LD pumping

      2017[12]Red LD6385637%12.2755.3-
      2020[14]Red LD63725-6.5752-
      2018[47]Red LD6363.0754.4%1.22714~818Longest tuning range
      2020[13]Red LD6363454.9%12.7725~808

      Highest slope efficiency

      with LD pumping

      2017[49]InGaN blue LD4443.520%0.326750First blue LD pumping
      2019[50]InGaN blue LD4453.539%0.57749.5-
      2020[16]Yellow laser5897.741%2.51727.2~787.3First yellow laser pumping
    • Table 6. Results of Q-switched experiments based on alexandrite crystal

      View table
      View in Article

      Table 6. Results of Q-switched experiments based on alexandrite crystal

      YearPump sourceQ-switchingPulse energyPulse width

      Repetition

      frequency

      Output

      power

      Ref.
      2014Red LDPockels cell0.74 mJ92 ns1 kHz740 mW[9]
      2014Red LDPockels cell0.7 mJ58 ns100 Hz70 mW[9]
      2016Red LDPockels cell0.8 mJ350 ns35 Hz28 mW[52]
      2016Red LDPockels cell6.2 mJ-100 Hz62 mW[52]
      2016Red LDPockels cell (cavity dumped)510 µJ3 nsMulti-kHz-[53]
      2018Red LDSESAM550 ns27 kHz-[54]
      2018Red LDPockels cell1 mJ420 ns150 Hz150 mW[55]
      2018Red LDPockels cell1.7 mJ850 ns500 Hz850 mW[56]
      2019Red LDSelf-Q-switching9.8 μJ660 ns135 kHz1.32 W[57]
    • Table 7. Results of mode-locking experiments based on alexandrite crystal

      View table
      View in Article

      Table 7. Results of mode-locking experiments based on alexandrite crystal

      YearPump sourceMode-lockingLaser wavelengthPulse width

      Repetition

      frequency

      Output powerRef.
      1982Flash lampOrganic dye725~745 nm8 ps12.5 Hz-[60]
      2016532 nm laserKLM755 nm170 fs80 MHz780 mW[62]
      2018532 nm laserQD-SESAM775 nm380 fs79.9 MHz295 mW[63]
      2018532 nm laserKLM750 nm70 fs5.6 MHz4 mW[64]
      2018532 nm laserGraphene750 nm65 fs5.56 MHz8 mW[65]
    • Table 8. The research progress of ultraviolet alexandrite laser

      View table
      View in Article

      Table 8. The research progress of ultraviolet alexandrite laser

      YearCrystalTypeCrystal dimensionsWavelength

      Pulse

      energy

      Pulse widthRepetition frequency

      Highest

      conversion efficiency/%

      Ref.
      1983RDPType I SHG10 mm×10 mm×25 mm0.36~0.40 µm5 mJ0.1 µs--[69]
      1988BBOType I SHG9 mm×5 mm×7 mm378 nm105 mJ-4 Hz31%[70]
      1989BBOType I SHG4 mm×9 mm×7 mm378 nm~19 mJ-10 Hz26%[72]
      1989BBOType I THG8 mm×4 mm×7.5 mm252 nm~7.5 mJ-10 Hz10%*[72]
      1994BBOType I SHG8 mm373 nm~72 mJ-60 Hz28.6%[71]
      1994KDPType I THG-248 nm15 mJ-100 Hz-[71]
      1998BBOType I SHG5 mm×5 mm×5 mm375 nm90 mJ240 µs10 Hz-[73]
      2001BBOType I SHG5 mm×5 mm×10 mm365 nm186 mJ220 µs-4.2%[74]
      2007LBOType I SHG5 mm×4 mm×5 mm0.36~0.388 µm0.87 mJ--3.5%[75]
      2016BBOType I SHG4 mm×4 mm×10 mm379 nm184 µJ-1 kHz47%[53]
    • Table 9. Some working lidars based on alexandrite lasers pumped by flashlamp[92]

      View table
      View in Article

      Table 9. Some working lidars based on alexandrite lasers pumped by flashlamp[92]

      PropertyCNRSNASAMPIIAPAreciboPNL
      ApplicationDIALDIALDIALRes flRes flLab
      SeedernonenoneTi:Al2O3DiodeDiodeDiode
      Wavelength range /nm727~732725~785720~780770770+385750
      Linewidth /MHz<560560<150<20<50<20
      Freq stability /MHz<110<40063 rms--16
      Spectral purity>99.95%>99.85%>99.99%>99%--
      Pulse width /ns<500200<200275100~300140
      Pulse energy /mJ3030>50100200250
      Pulse rate /pps2010>15252020
      InstallationGroundAircraftGroundShipGroundGround
    Tools

    Get Citation

    Copy Citation Text

    Zhi-gang ZHAO, Chen GUAN, Zhen-hua CONG, Xing-yu ZHANG, Zhen ZHU, Shi-wu WANG, Yi NIE, Yang LIU, Zhao-jun LIU. Research Progresses of Alexandrite Solid-state Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 77

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Mar. 11, 2021

    The Author Email: LIU Zhao-jun (zhaojunliu@sdu.edu.cn)

    DOI:10.3788/gzxb20204911.1149006

    Topics