Chinese Journal of Quantum Electronics, Volume. 35, Issue 6, 697(2018)

Recurrence of unbiased quantum walk

Rong ZHANG* and Peng YANG
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [1] [1] Attal S, Petruccione F, Sabot C, et al. Open quantum random walks [J]. Journal of Statistical Physics, 2012, 147(4): 832-852.

    [2] [2] Childs A M, et al. On the relationship between continuous-and discrete-time quantum walk [J]. Communications in Mathematical Physics, 2008, 294(2): 581-603.

    [3] [3] Edward Farhi, Sam Gutmann. Analog analogue of a digital quantum computation [J]. Physical Review A, 2012, 57(4): 2403-2406.

    [4] [4] Childs A M, Farhi E, Gutmann S. An example of the difference between quantum and classical random walks [J]. Quantum Information Processing, 2002, 1(1-2): 35-43.

    [5] [5] Watabe K, Kobayashi N, Katori M, et al. Limit distributions of two-dimensional quantum walks [J]. Physical Review A, 2008, 77(6): 195-199.

    [6] [6] Shenvi N, Kempe J, Whaley K B, et al. Quantum random-walk search algorithm [J]. Physical Review A, 2002, 67(5): 125-128.

    [7] [7] Vieira R, Amorim E P, Rigolin G, et al. Dynamically disordered quantum walk as a maximal entanglement generator [J]. Physical Review Letters, 2013, 111(18): 180503.

    [9] [9] Tran N, Kresta P, Reimer J, et al. Quantum walk as a generalized measuring device [J]. Physical Review Letters, 2013, 110(20): 220404

    [10] [10] Xue P, Zhang R, Bian Z, et al. Localized state in a two-dimensional quantum walk on a disordered lattice [J]. Physical Review A, 2016, 92(4): 103-108.

    [11] [11] Zeng M, Yong E H. Discrete-time quantum walk with phase disorder: Localization and entanglement entropy [J]. Scientific Reports, 2017, 7(1): 12024.

    [12] [12] Zhan X, Xiao L, Bian Z, et al. Detecting topological invariants in nonunitary discrete-time quantum walks [J]. Physical Review Letters, 2017, 119(13): 130501.

    [13] [13] Lao N, Mitchell T, Cohen W W. Random walk inference and learning in a large scale knowledge base [C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011: 529-539.

    [15] [15] Mayeri S. Recurrence of biased quantum walks on a line [J]. New Journal of Physics, 2009, 11(4): 27-43.

    [16] [16] Kiss T, Kecskés L, tefaňák M, et al. Recurrence in coined quantum walks [J]. Physica Scripta, 2009, 2009(T135): 023027.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Rong, YANG Peng. Recurrence of unbiased quantum walk[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 697

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 9, 2017

    Accepted: --

    Published Online: Dec. 26, 2018

    The Author Email: Rong ZHANG (zhangr-nj@163.com)

    DOI:10.3969/j.issn.1007-5461. 2018.06.009

    Topics