Journal of Electronic Science and Technology, Volume. 22, Issue 2, 100248(2024)
Machine learning algorithm partially reconfigured on FPGA for an image edge detection system
[1] [1] J.F. Keane, S.S. Carr, A brief histy of early unmanned aircraft, J. Hopkins APL Tech. D. 32 (3) (2013) 558–571.
[2] [2] R. Yanushevsky, Guidance of Unmanned Aerial Vehicles, CRC Press, Boca Raton, 2011.
[3] [3] M.S. Grewal, A.P. rews, C.G. Bartone, Global Navigation Satellite Systems, Inertial Navigation, Integration, 4th ed., Wiley, Hoboken, 2020.
[4] [4] M. Jun, S.I. Roumeliotis, G.S. Sukhatme, State estimation of an autonomous helicopter using Kalman filtering, in: Proc. of IEEERSJ Intl. Conf. on Intelligent Robots Systems. Human Environment Friendly Robots with High Intelligence Emotional Quotients, Kyongju, South Kea, 1999, pp. 1346–1353.
[5] [5] Y. Oshman, I. Shaviv, Optimal tuning of a Kalman filter using geic algithms, in: Proc. of AIAA Guidance, Navigation, Control Conf. Exhibit, Dever, USA, 2000, pp. 1–11.
[6] [6] J. Sasiadek, Q. Wang, R. Johnson, L. Sun, J. Zalewski, UAV navigation based on parallel extended Kalman filter, in: Proc. of AIAA Guidance, Navigation, Control Conf. Exhibit, Dever, USA, 2000, pp. 1–8.
[7] Conte G., Doherty P.. Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP J. Adv. Sig. Pr., 2009, 387308:1-18(2009).
[8] [8] A. Mohammadi, F. Sheikholeslam, M. Emami, Metaheuristic algithms f integrated navigation systems, in: M. Ouaissa, I.U. Khan, M. Ouaissa, Z. Boulouard, S.B.H. Shah (Eds.), Computational Intelligence f Unmanned Aerial Vehicles Communication wks, Springer, Cham, 2022, pp. 45–72.
[9] [9] B. Zolesi, L.R. Cer, Ionospheric Prediction Fecasting, Springer, Berlin, 2014.
[10] Steenburgh R.A., Smithtro C.G., Groves K.M.. Ionospheric scintillation effects on single frequency GPS. Space Weather, 6, S04D02:1-12(2008).
[12] [12] M.H. Mokhtar, N.A. Rahim, M.Y. Ismail, S.M. Buhari, Ionospheric perturbation: A review of equatial plasma bubble in the ionosphere, in: Proc. of 6th Intl. Conf. on Space Science Communication, Joh Bahru, Malaysia, 2019, pp. 23–28.
[13] [13] D. Silva, H. Takahashi, C. Wrasse, C. Figueireido, acteristics of ionospheric bubbles observed by TEC maps in Brazilian sect, in: Proc. of 15th Intl. Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 2017, pp. 23–28.
[14] Takahashi H., Taylor M.J., Sobral J.H.A., Medeiros A.F., Gobbi D., Santana D.C.. Fine structure of the ionospheric plasma bubbles observed by the OI 6300 and 5577 airglow images. Adv. Space Res., 27, 1189-1194(2001).
[16] Couturier A., Akhloufi M.A.. A review on absolute visual localization for UAV. Robot. Auton. Syst., 135, 103666:1-17(2021).
[17] [17] A. Couturier, M.A. Akhloufi, Convolutional neural wks particle filter f UAV localization, in: Proc. of SPIE 11758, Unmanned Systems Technology XXIII, Online, 2021, pp. 117580D:1–13.
[18] [18] V. Walter, M. Vrba, M. Saska, On training datasets f machine learningbased visual relative localization of microscale UAVs, in: Proc. of IEEE Intl. Conf. on Robotics Automation, Paris, France, 2020, pp. 10674–10680.
[19] Torres V.A.M.F., Jaimes B.R.A., Ribeiro E.S. et al. Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs. Eng. Appl. Artif. Intel., 87, 103227:1-9(2020).
[20] [20] G. da Penha o, H.F. de Campos Velho, E.H. Shiguemi, J.R.G. Braga, Image processing f UAV autonomous navigation applying selfconfiguring neural wk, in: C. Consta, P. Harris (Eds.), Integral Methods in Science Engineering, Springer, Cham, 2019, pp. 321–332.
[21] [21] J.R.G. Braga, H.F. de Campos Velho, E.H. Shiguemi, P. Doherty, Drone autonomous navigation by hardware image processing, in: A. Cardoan, L. Garelli, J.M. Gimenez, P.A. Kler, S.M. Damián, M.A. Stti (Eds.), Mecânica Computacional Vol XXXVII, Santa Fe, 2019, pp. 2033–2043.
[22] Silva C.A.O., Goltz G.A.M., Shiguemori E.H. et al. Image matching applied to autonomous navigation of unmanned aerial vehicles. Intl. Journal of High Performance Systems Architecture, 6, 205-212(2017).
[23] [23] A. Shetty, G.X. Gao, UAV pose estimation using crossview geolocalization with satellite imagery, in: Proc. of Intl. Conf. on Robotics Automation, Montreal, Canada, 2019, pp. 1827–1833.
[24] [24] T. Hinzmann, R. Siegwart, Deep UAV localization with reference view rendering [Online]. Available, https:arxiv.gabs2008.04619, August 2020.
[25] [25] T.Y. Lin, S. Belongie, J. Hays, Crossview image geolocalization, in: Proc. of IEEE Conf. on Computer Vision Pattern Recognition, Ptl, USA, 2013, pp. 891–898.
[26] [26] T.Y. Lin, Y. Cui, S. Belongie, J. Hays, Learning deep representations f groundtoaerial geolocalization, in: Proc. of IEEE Conf. on Computer Vision Pattern Recognition, Boston, USA, 2015, pp. 5007–5015.
[27] [27] J.R.G. Braga, Navegação Autônoma de VANT p Imagens LiDAR, Ph.D. dissertation, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 2018.
[31] Li K., Tian Y.-J., Wang B., Qi Z.-Q., Wang Q.. Bi-directional pyramid network for edge detection. Electronics, 10, 329:1-15(2021).
[32] Zhan J.-Y., Yu A.-T., Jiang W. et al. FPGA-based acceleration for binary neural networks in edge computing. Journal of Electronic Science and Technology, 21, 100204:1-13(2023).
[33] [33] M.D. Ciletti, Advanced Digital Design with the Verilog HDL, 2nd ed., Prentice Hall Press, Upper Saddle River, 2010.
[35] [35] X.D. Sun, Z.Q. Wang, W. Jing, Image filtering edge detection system based on FPGA, in: Proc. of 10th Intl. Conf. on Communications, Signal Processing, Systems, Singape, Singape, 2022, pp. 148–156.
[36] [36] Q. Qin, L.Y. Sun, Y. Feng, Realtime image filtering edge detection method based on FPGA, in: Proc. of IEEE 5th Intl. Conf. on Electronics Technology, Chengdu, China, 2022, pp. 1168–1173.
[37] De Vivo F., Battipede M., Johnson E.. Infrared line camera data-driven edge detector in UAV forest fire monitoring. Aerosp. Sci. Technol., 111, 106574:1-8(2021).
[38] Kaur K., Jindal N., Singh K.. Fractional Fourier transform based Riesz fractional derivative approach for edge detection and its application in image enhancement. Signal Process., 180, 107852:1-19(2021).
[39] [39] J.M. Zhang, Z.Y. Zi, T. Jiang, C. Zhang, Y.H. Tai, Implementation optimization of FPGAbased edge detection algithm, in: Z.T. Yu, S. Patnaik, J. Wang, N. Dey (Eds.), Advancements in Mechatronics Intelligent Robotics, Springer, Singape, 2021, pp. 611–617.
[41] [41] G. Conte, P. Doherty, An integrated UAV navigation system based on aerial image matching, in: Proc. of IEEE Aerospace Conf., Big Sky, USA, 2008, pp. 1–10.
[42] [42] J.R.G. Braga, H.F.C. Velho, G. Conte, P. Doherty, É.H. Shiguemi, An image matching system f autonomous UAV navigation based on neural wk, in: Proc. of 14th Intl. Conf. on Control, Automation, Robotics Vision, Phuket, Thail, 2016, pp. 1–6.
[43] da Luz E.F.P., Becceneri J.C., de Campos Velho H.F.. A new multi-particle collision algorithm for optimization in a high performance environment. Journal of Computational Interdisciplinary Sciences, 1, 3-10(2008).
[44] [44] H. Gofth, S. Lucey, GPSdenied UAV localization using preexisting satellite imagery, in: Proc. of Intl. Conf. on Robotics Automation, Montreal, Canada, 2019, pp. 2974–2980.
[45] [45] J.F. Hughes, A. van Dam, M. McGuire, et al., Computer Graphics: Principles Practice, 3rd ed., AddisonWesley, Reading, 2013.
[47] Cortes C., Vapnik V.. Support-vector networks. Mach. Learn., 20, 273-297(1995).
[48] [48] B. Schölkopf, P. Simard, A. Smola, V. Vapnik, Pri knowledge in suppt vect kernels, in: Proc. of 10th Intl. Conf. on Neural Infmation Processing Systems, Cambridge, USA, 1997, pp. 640–646.
[49] [49] V.N. Vapnik, The Nature of Statistical Learning They, Springer, New Yk, 1995.
[50] [50] V.N. Vapnik, A.Y. Chervonenkis, On the unifm convergence of relative frequencies of events to their probabilities, in: V. Vovk, H. Papadopoulos, A. Gammerman (Eds.), Measures of Complexity, Springer, Cham, 2015, pp. 11–30.
[51] [51] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, Suppt vect regression machines, in: Proc. of 9th Intl. Conf. on Neural Infmation Processing Systems, Denver, USA, 1996, pp. 155–161.
[52] [52] M. Awad, R. Khanna, Efficient Learning Machines: Theies, Concepts, Applications f Engineers System Designers, Apress, Berkeley, 2015.
[53] Batista G.C., Oliveira D.L., Saotome O., Silva W.L.S.. A low-power asynchronous hardware implementation of a novel SVM classifier. with an application in a speech recognition system, Microelectron. J., 105, 104907:1-17(2020).
[54] Guo L.-G., Wu S.-T.. FPGA implementation of a real-time edge detection system based on an improved Canny algorithm. Appl. Sci., 13, 870:1-17(2023).
[55] [55] V. Conti, C. Militello, L. Rundo, S. Vitabile, A novel bioinspired approach f highperfmance management in serviceiented wks, IEEE T. Emerg. Top. Com. 9 (4) (Oct.–Dec. 2021) 1709–1722.
Get Citation
Copy Citation Text
Gracieth Cavalcanti Batista, Johnny Öberg, Osamu Saotome, Haroldo F. de Campos Velho, Elcio Hideiti Shiguemori, Ingemar Söderquist. Machine learning algorithm partially reconfigured on FPGA for an image edge detection system[J]. Journal of Electronic Science and Technology, 2024, 22(2): 100248
Category:
Received: Aug. 15, 2023
Accepted: Mar. 30, 2024
Published Online: Aug. 8, 2024
The Author Email: Batista Gracieth Cavalcanti (gracieth@kth.se)