Acta Optica Sinica, Volume. 42, Issue 21, 2126007(2022)

Coherent Manipulation of Single Photon Scattering in Chirally Coupled System of Giant Atom with a Pair of Waveguides

Longgao Tao, Xiaosan Ma, and Mutian Cheng*
Author Affiliations
  • School of Electrical and Information Engineering, Anhui University of Technology, Maanshan243002, Anhui , China
  • show less
    References(50)

    [1] Liao Z Y, Zeng X D, Nha H et al. Photon transport in a one-dimensional nanophotonic waveguide QED system[J]. Physica Scripta, 91, 063004(2016).

    [2] Gu X, Kockum A F, Miranowicz A et al. Microwave photonics with superconducting quantum circuits[J]. Physics Reports, 718/719, 1-102(2017).

    [3] Xiao S, Xu X L. On-chip chiral nanophotonic devices based on semiconductor quantum dots[J]. Acta Optica Sinica, 42, 0327009(2022).

    [4] Liu L F, Hu Y Q, Zhang S C et al. Research progress on active and passive magnetic-free nonreciprocity[J]. Acta Optica Sinica, 42, 0327010(2022).

    [5] Zhou L, Yang L P, Li Y et al. Quantum routing of single photons with a cyclic three-level system[J]. Physical Review Letters, 111, 103604(2013).

    [6] Cheng M T, Ma X S, Zhang J Y et al. Single photon transport in two waveguides chirally coupled by a quantum emitter[J]. Optics Express, 24, 19988-19993(2016).

    [7] Yan W B, Ni W Y, Zhang J et al. Tunable single-photon diode by chiral quantum physics[J]. Physical Review A, 98, 043852(2018).

    [8] Yan C H, Li Y, Yuan H D et al. Targeted photonic routers with chiral photon-atom interactions[J]. Physical Review A, 97, 023821(2018).

    [9] Wang C, Ma X S, Cheng M T. Giant atom-mediated single photon routing between two waveguides[J]. Optics Express, 29, 40116-40124(2021).

    [10] Li X M, Xin J, Li G L et al. Quantum routings for single photons with different frequencies[J]. Optics Express, 29, 8861-8871(2021).

    [11] Zhu Y T, Jia W Z. Single-photon quantum router in the microwave regime utilizing double superconducting resonators with tunable coupling[J]. Physical Review A, 99, 063815(2019).

    [12] Wang X, Shui T, Li L et al. Tunable single-photon diode and circulator via chiral waveguide-emitter couplings[J]. Laser Physics Letters, 17, 065201(2020).

    [13] Ren Y L, Ma S L, Xie J K et al. Nonreciprocal single-photon quantum router[J]. Physical Review A, 105, 013711(2022).

    [14] Huang J S, Wang J W, Wang Y et al. Control of single-photon routing in a T-shaped waveguide by another atom[J]. Quantum Information Processing, 17, 78(2018).

    [15] Wang X, Yang W X, Chen A X et al. Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide-cavity-emitter system beyond the chiral coupling[J]. Quantum Science and Technology, 7, 015025(2022).

    [16] Zhang W R, Shui T, Liu Y L et al. Photon routing based on non-chiral interaction between atoms and waveguides[J]. Laser Physics Letters, 19, 015203(2022).

    [17] Huang J, Kumar P. Observation of quantum frequency conversion[J]. Physical Review Letters, 68, 2153-2156(1992).

    [18] Porat G, Silberberg Y, Arie A et al. Two photon frequency conversion[J]. Optics Express, 20, 3613-3619(2012).

    [19] Wang G, Xue Y, Wu J H et al. Efficient frequency conversion induced by quantum constructive interference[J]. Optics Letters, 35, 3778-3780(2010).

    [20] Dong C H, Fiore V, Kuzyk M C et al. Optomechanical dark mode[J]. Science, 338, 1609-1613(2012).

    [21] Hill J T, Safavi-Naeini A H, Chan J et al. Coherent optical wavelength conversion via cavity optomechanics[J]. Nature Communications, 3, 1196(2012).

    [22] Li X B, Wang H L, Ma L N et al. Wavelength conversion characteristics of quantum-dot semiconductor optical amplifier based on photonic crystal[J]. Acta Optica Sinica, 42, 0206001(2022).

    [23] Bradford M, Obi K C, Shen J T. Efficient single-photon frequency conversion using a Sagnac interferometer[J]. Physical Review Letters, 108, 103902(2012).

    [24] Zheng A S, Lü X Y, Liu J B. Single-photon frequency conversion for generation of entanglement via constructive interference in Sagnac interferometers[J]. Journal of Physics B, 47, 055501(2014).

    [25] Chen H Y, Liu J B. Ultra-wide single-photon frequency conversion and entanglement via constructive interference[J]. Journal of Physics B, 47, 245503(2014).

    [26] Jia W Z, Wang Y W, Liu Y X. Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits[J]. Physical Review A, 96, 053832(2017).

    [27] Xu X W, Chen A X, Li Y et al. Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides[J]. Physical Review A, 96, 053853(2017).

    [28] Liao Z Y, Nha H, Zubairy M S et al. Single-photon frequency-comb generation in a one-dimensional waveguide coupled to two atomic arrays[J]. Physical Review A, 93, 033851(2016).

    [29] Xiao H, Wang L J, Yuan L Q et al. Frequency manipulations in single-photon quantum transport under ultrastrong driving[J]. ACS Photonics, 7, 2010-2017(2020).

    [30] Gustafsson M V, Aref T, Kockum A F et al. Propagating phonons coupled to an artificial atom[J]. Science, 346, 207-211(2014).

    [31] Kannan B, Ruckriegel M J, Campbell D L et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms[J]. Nature, 583, 775-779(2020).

    [32] González-Tudela A, Muñoz C S, Cirac J I. Engineering and harnessing giant atoms in high-dimensional baths: a proposal for implementation with cold atoms[J]. Physical Review Letters, 122, 203603(2019).

    [33] Du L, Zhang Y, Wu J H et al. Giant atoms in a synthetic frequency dimension[J]. Physical Review Letters, 128, 223602(2022).

    [34] Kockum A F, Delsing P, Johansson G. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom[J]. Physical Review A, 90, 013837(2014).

    [35] Kockum A F, Johansson G, Nori F. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics[J]. Physical Review Letters, 120, 140404(2018).

    [36] Carollo A, Cilluffo D, Ciccarello F. Mechanism of decoherence-free coupling between giant atoms[J]. Physical Review Research, 2, 043184(2020).

    [37] Guo S J, Wang Y D, Purdy T et al. Beyond spontaneous emission: giant atom bounded in the continuum[J]. Physical Review A, 102, 033706(2020).

    [38] Guo L Z, Kockum A F, Marquardt F et al. Oscillating bound states for a giant atom[J]. Physical Review Research, 2, 043014(2020).

    [39] Wang X, Liu T, Kockum A F et al. Tunable chiral bound states with giant atoms[J]. Physical Review Letters, 126, 043602(2021).

    [40] Wen P Y, Lin K T, Kockum A F et al. Large collective lamb shift of two distant superconducting artificial atoms[J]. Physical Review Letters, 123, 233602(2019).

    [41] Cai Q Y, Jia W Z. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation[J]. Physical Review A, 104, 033710(2021).

    [42] Feng S L, Jia W Z. Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms[J]. Physical Review A, 104, 063712(2021).

    [43] Zhao W, Zhang Y, Wang Z H. Phase-modulated Autler-Townes splitting in a giant-atom system within waveguide QED[J]. Frontiers of Physics, 17, 42506(2022).

    [44] Zhao W, Wang Z H. Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points[J]. Physical Review A, 101, 053855(2020).

    [45] Du L, Li Y. Single-photon frequency conversion via a giant Λ-type atom[J]. Physical Review A, 104, 023712(2021).

    [46] Du L, Chen Y T, Li Y. Nonreciprocal frequency conversion with chiral Λ-type atoms[J]. Physical Review Research, 3, 043226(2021).

    [47] Shen J T, Fan S H. Coherent photon transport from spontaneous emission in one-dimensional waveguides[J]. Optics Letters, 30, 2001-2003(2005).

    [48] Shen J T, Fan S H. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits[J]. Physical Review Letters, 95, 213001(2005).

    [49] Wu J B, Zhang S C, Hu Y Q et al. Intracavity electromagnetically induced transparency and its linewidth under a weak control field[J]. Acta Optica Sinica, 38, 0727002(2018).

    Tools

    Get Citation

    Copy Citation Text

    Longgao Tao, Xiaosan Ma, Mutian Cheng. Coherent Manipulation of Single Photon Scattering in Chirally Coupled System of Giant Atom with a Pair of Waveguides[J]. Acta Optica Sinica, 2022, 42(21): 2126007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: May. 23, 2022

    Accepted: Jul. 4, 2022

    Published Online: Nov. 4, 2022

    The Author Email: Cheng Mutian (mtcheng@ahut.edu.cn)

    DOI:10.3788/AOS202242.2126007

    Topics