Optical Instruments, Volume. 45, Issue 1, 18(2023)
Virtual staining techniques for cellular microscopic imaging
[2] AMARASEKARA H, OSHABEN K M, JEANS K B, et al. Cyclopentane peptide nucleic acid: Gold nanoparticle conjugates for the detection of nucleic acids in a microfluidic format[J]. Biopolymers, 113, e23481(2022).
[3] TANG J S, WU L L, LIN J T, et al. Development of quantum dot‐based fluorescence lateral flow immuno-assay strip for rapid and quantitative detection of serum interleukin‐6[J]. Journal of Clinical Laboratory Analysis, 35, e23752(2021).
[4] ZHOU J M, ZHANG X L, QIAN W J, et al. Quantum dots‐based fluorescence immunoassay for detection of tiamulin in pork[J]. Journal of Food Safety, 41, e12930(2021).
[5] GU M X, DONATO M, GUO M Z, et al. iPSC–endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension[J]. Science Translational Medicine, 13, eaba6480(2021).
[6] GONÇALVES I M, CARVALHO V, RODRIGUES R O, et al. Organ-on-a-chip platforms for drug screening and delivery in tumor cells: a systematic review[J]. Cancers, 14, 935(2022).
[7] BOWMAN A J, KLOPFER B B, JUFFMANN T, et al. Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy[J]. Nature Communications, 10, 4561(2019).
[8] ADAMS J K, BOOMINATHAN V, AVANTS B W, et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope[J]. Science Advances, 3, e1701548(2017).
[9] GUO M, CHANDRIS P, GIANNINI J P, et al. Single-shot super-resolution total internal reflection fluorescence microscopy[J]. Nature Methods, 15, 425-428(2018).
[10] MIKAMI H, KAWAGUCHI M, HUANG C J, et al. Virtual-freezing fluorescence imaging flow cytometry[J]. Nature Communications, 11, 162(2020).
[11] HAN Y Y, GU Y, ZHANG A C, et al. Review: Imaging technologies for flow cytometry[J]. Lab on a Chip, 16, 4639-4647(2016).
[12] YANG C Y, QIN Y, JIANG D C, et al. Continuous fluorescence imaging of intracellular calcium by use of ion-selective nanospheres with adjustable spectra[J]. ACS Applied Materials & Interfaces, 8, 19892-19898(2016).
[13] HEO Y, SHIN K, PARK M C, et al. Photooxidation-induced fluorescence amplification system for an ultra-sensitive enzyme-linked immunosorbent assay (ELISA)[J]. Scientific Reports, 11, 5831(2021).
[14] ZHANG Y J, DE HAAN K, RIVENSON Y, et al. Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue[J]. Light:Science & Applications, 9, 78(2020).
[15] DE HAAN K, ZHANG Y J, ZUCKERMAN J E, et al. Deep learning-based transformation of H&E stained tissues into special stains[J]. Nature Communications, 12, 4884(2021).
[16] BURLINGAME E A, MCDONNELL M, SCHAU G F, et al. SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning[J]. Scientific Reports, 10, 17507(2020).
[17] RIVENSON Y, DE HAAN K, WALLACE W D, et al. Emerging advances to transform histopathology using virtual staining[J]. BME Frontiers, 2020, 9647163(2020).
[18] RIVENSON Y, CEYLAN KOYDEMIR H, WANG H D, et al. Deep learning enhanced mobile-phone microscopy[J]. ACS Photonics, 5, 2354-2364(2018).
[19] TATA A, GRIBBLE A, VENTURA M, et al. Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues[J]. Chemical Science, 7, 2162-2169(2016).
[20] PARRA E R, ZHAI J, TAMEGNON A, et al. Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues[J]. Scientific Reports, 11, 4530(2021).
[21] PATEL P G, SELVARAJAH S, BOURSALIE S, et al. Preparation of formalin-fixed paraffin-embedded tissue cores for both RNA and DNA extraction[J]. JoVE (Journal of Visualized Experiments), e54299(2016).
[22] RIVENSON Y, WANG H D, WEI Z S, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning[J]. Nature Biomedical Engineering, 3, 466-477(2019).
[23] [23] RONNEBERGER O, FISCHER P, BROX T. U: Convolutional wks f biomedical image segmentation[C]Proceedings of the 18th International Conference on Medical Image Computing ComputerAssisted Intervention. Munich: Springer, 2015: 234241.
[24] [24] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. Boston: IEEE, 2015: 19.
[25] [25] GOODFELLOW I J, POUGETABADIE J, MIRZA M, et al. Generative adversarial s[C]Proceedings of the 27th International Conference on Neural Infmation Processing Systems. Cambridge: MIT Press, 2014: 27.
[26] [26] MIRZA M, OSINDERO S. Conditional generative adversarial s[EBOL]. (20141106) [20221012]. https:arxiv.gabs1411.1784
[27] RANA A, LOWE A, LITHGOW M, et al. Use of deep learning to develop and analyze computational hematoxylin and eosin staining of prostate core biopsy images for tumor diagnosis[J]. JAMA Network Open, 3, e205111(2020).
[28] [28] ZHU J Y, PARK T, ISOLA P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial wks[C]Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 22232232.
[29] LI X Y, ZHANG G X, QIAO H, et al. Unsupervised content-preserving transformation for optical microscopy[J]. Light:Science & Applications, 10, 44(2021).
Get Citation
Copy Citation Text
Hao ZHANG, Bo DAI, Dawei ZHANG. Virtual staining techniques for cellular microscopic imaging[J]. Optical Instruments, 2023, 45(1): 18
Category: APPLICATION TECHNOLOGY
Received: Aug. 12, 2022
Accepted: --
Published Online: Mar. 20, 2023
The Author Email: DAI Bo (daibo@usst.edu.cn)