Optics and Precision Engineering, Volume. 31, Issue 2, 234(2023)
Parallel path and strong attention mechanism for building segmentation in remote sensing images
[1] J L DU, D CHEN, R S WANG et al. A novel framework for 2.5-D building contouring from large-scale residential scenes. IEEE Transactions on Geoscience and Remote Sensing, 57, 4121-4145(2019).
[2] Z B LI, W Z SHI, Q M WANG et al. Extracting man-made objects from high spatial resolution remote sensing images via fast level set evolutions. IEEE Transactions on Geoscience and Remote Sensing, 53, 883-899(2015).
[3] N L GAVANKAR, S K GHOSH. Automatic building footprint extraction from high-resolution satellite image using mathematical morphology. European Journal of Remote Sensing, 51, 182-193(2018).
[4] [4] 4孙伟, 孙鹏翔, 黄恒, 等. 基于滑动窗口的影像中建筑物特征提取方法研究[J]. 传感技术学报, 2021, 34(8): 1096-1101. doi: 10.3969/j.issn.1004-1699.2021.08.014SUNW, SUNP X, HUANGH, et al. Research on building feature extraction method in image based on sliding window[J]. Chinese Journal of Sensors and Actuators, 2021, 34(8): 1096-1101.(in Chinese). doi: 10.3969/j.issn.1004-1699.2021.08.014
[5] G SOHN, I DOWMAN. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 43-63(2007).
[6] [6] 6徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7): 1588-1599. doi: 10.37188/ope.20202807.1588XUSH J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Opt. Precision Eng., 2020, 28(7): 1588-1599.(in Chinese). doi: 10.37188/ope.20202807.1588
[7] [7] 7朱祺琪, 李真, 张亚男, 等. 全局局部细节感知条件随机场的高分辨率遥感影像建筑物提取[J]. 遥感学报, 2021, 25(7): 1422-1433.ZHUQ Q, LIZH, ZHANGY N, et al. Global-Local-Aware conditional random fields based building extraction for high spatial resolution remote sensing images[J]. National Remote Sensing Bulletin, 2021, 25(7): 1422-1433.(in Chinese)
[8] G M WU, X W SHAO, Z L GUO et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks. Remote Sensing, 10, 407(2018).
[9] S P JI, S Q WEI, M LU. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Remote Sensing, 57, 574-586(2019).
[10] P H LIU, X P LIU, M X LIU et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network. Remote Sensing, 11, 830(2019).
[11] W C KANG, Y M XIANG, F WANG et al. EU-net: an efficient fully convolutional network for building extraction from optical remote sensing images. Remote Sensing, 11, 2813(2019).
[12] K SUN, B XIAO, D LIU et al. Deep high-resolution representation learning for human pose estimation, 5686-5696(2020).
[13] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[14] S HONG, B HAN. Learning deconvolution network for semantic segmentation, 1520-1528(2016).
[15] F I DIAKOGIANNIS, F WALDNER, P CACCETTA et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 94-114(2020).
[16] K M HE, X Y ZHANG, S Q REN et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[17] H S ZHAO, J P SHI, X J QI et al. Pyramid scene parsing network, 6230-6239(2017).
[18] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[19] H F LI, K J QIU, L CHEN et al. SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18, 905-909(2021).
[20] V MNIH. Machine Learning for Aerial Image Labeling(2013).
[21] LIU, LUO, HUANG, et al, LIU, LUO, HUANG, et al, LIU, LUO, HUANG, et al. DE-net: deep encoding network for building extraction from high-resolution remote sensing imagery. Remote Sensing, 11, 2380(2019).
[22] H N GUO, X SU, S K TANG et al. Scale-robust deep-supervision network for mapping building footprints from high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10091-10100(2021).
[23] W J DENG, Q SHI, J LI. Attention-gate-based encoder-decoder network for automatical building extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2611-2620(2021).
[24] Z Y CHEN, D L LI, W T FAN et al. Self-attention in reconstruction bias U-net for semantic segmentation of building rooftops in optical remote sensing images. Remote Sensing, 13, 2524(2021).
Get Citation
Copy Citation Text
Jianhua YANG, Hao ZHANG, Haiyang HUA. Parallel path and strong attention mechanism for building segmentation in remote sensing images[J]. Optics and Precision Engineering, 2023, 31(2): 234
Category: Information Sciences
Received: Mar. 1, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: HUA Haiyang (c3i11@sia.cn)