Optics and Precision Engineering, Volume. 32, Issue 11, 1788(2024)

Detection of conductive multi-particles based on circular convolutional neural network

Zilong LIU1...2, Chen LUO1,2,*, Yijun ZHOU1,2, and Lei JIA12 |Show fewer author(s)
Author Affiliations
  • 1College of Mechanical Engineering, Southeast University, Nanjing289, China
  • 2Wuxi Shangshi-finevision Technology Co., Ltd, Wuxi14174, China
  • show less
    References(20)

    [1] H HWANG, M KONG, K KIM et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Science Advances, 7(2021).

    [2] [2] 贾磊. 面向超细间距玻璃覆晶封装的凸点植焊导电颗粒技术开发与研究[D]. 上海: 上海交通大学, 2014.JIAL. Development of Particle on Bump Method for Ultra-fine Pitch Chip on Glass Technology[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)

    [3] S GOYANES. Conductive particles in anisotropic conductive films. Polymer Science: Peer Review Journal, 3, 1-5(2022).

    [4] [4] 范霆霄. 基于机器视觉的TFT-LCD面板芯片在线检测技术研究[D]. 南京: 东南大学, 2022.FANT X. Research on On-line Inspection Technology of TFT-LCD Panel Chip Based on Machine Vision[D].Nanjing: Southeast University, 2022. (in Chinese)

    [5] [5] 夏衍,罗晨,周怡君,等.基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J].光学 精密工程,2023,31(22):3357-3370. doi: 10.37188/OPE.20233122.3357XIAY, LUOCH, ZHOUY J, et al. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Opt. Precision Eng.,2023,31(22):3357-3370.(in Chinese). doi: 10.37188/OPE.20233122.3357

    [6] C S LIN, K H HUANG, T C LIN et al. An automatic inspection method for the fracture conditions of anisotropic conductive film in the TFT-LCD assembly process. International Journal of Optomechatronics, 5, 286-298(2011).

    [7] E ARKIN, N YADIKAR, Y MUHTAR et al. A survey of object detection based on CNN and transformer, 99-108(2021).

    [9] Y Y WANG, L MA, L H JIAN et al. Multi-scale deep adversarial network for particle detection in liquid crystal module. Applied Soft Computing, 116, 108326(2022).

    [10] Y Y WANG, L MA, H Q JIANG. Detecting conductive particles in TFT-LCD with U-MultiNet, 1-3(2019).

    [11] Y Y WANG, L MA, M Y JIU et al. Detection of conductive particles in TFT-LCD circuit using generative adversarial networks. IEEE Access, 8, 101338-101350(2020).

    [12] E Y LIU, K P CHEN, Z Y XIANG et al. Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing. Journal of Intelligent Manufacturing, 31, 1037-1049(2020).

    [13] Y Y WANG, L MA, L H JIAN et al. Conductive particle detection via efficient encoder-decoder network. Journal of Intelligent Manufacturing, 34, 3563-3577(2023).

    [14] X TAO, W Z MA, Z F LU et al. Conductive particle detection for chip on glass using convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 70, 3519310(2021).

    [15] C LUO, T X FAN, Y XIA et al. Deep learning-based conductive particle inspection for TFT-LCDs inspired by parametric space envelope. Journal of Intelligent Manufacturing, 1, 1-11(2023).

    [16] T Y LI, F ZHANG, H B YANG et al. A novel method for LCD module alignment and particle detection in anisotropic conductive film bonding. Machines, 11, 49(2023).

    [17] J F DAI, H Z QI, Y W XIONG et al. Deformable convolutional networks, 764-773(2017).

    [18] W LI, K LIU, L Z ZHANG et al. Object detection based on an adaptive attention mechanism. Scientific Reports, 10, 11307(2020).

    [19] D OSTHUS, B P WEAVER, E M CASLETON et al. On gauge repeatability and reproducibility studies for counts. Quality Engineering, 33, 641-654(2021).

    [20] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    Tools

    Get Citation

    Copy Citation Text

    Zilong LIU, Chen LUO, Yijun ZHOU, Lei JIA. Detection of conductive multi-particles based on circular convolutional neural network[J]. Optics and Precision Engineering, 2024, 32(11): 1788

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 25, 2023

    Accepted: --

    Published Online: Aug. 8, 2024

    The Author Email: LUO Chen (chenluo@seu.edu.cn)

    DOI:10.37188/OPE.20243211.1788

    Topics